Metamath Proof Explorer


Theorem voliooico

Description: An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses voliooico.1 φ A
voliooico.2 φ B
Assertion voliooico φ vol A B = vol A B

Proof

Step Hyp Ref Expression
1 voliooico.1 φ A
2 voliooico.2 φ B
3 iftrue A < B if A < B B A 0 = B A
4 3 adantl φ A B A < B if A < B B A 0 = B A
5 2 recnd φ B
6 5 subidd φ B B = 0
7 6 eqcomd φ 0 = B B
8 7 ad2antrr φ A B ¬ A < B 0 = B B
9 iffalse ¬ A < B if A < B B A 0 = 0
10 9 adantl φ A B ¬ A < B if A < B B A 0 = 0
11 simpll φ A B ¬ A < B φ
12 11 1 syl φ A B ¬ A < B A
13 11 2 syl φ A B ¬ A < B B
14 simpr φ A B A B
15 14 adantr φ A B ¬ A < B A B
16 simpr φ A B ¬ A < B ¬ A < B
17 12 13 15 16 lenlteq φ A B ¬ A < B A = B
18 oveq2 A = B B A = B B
19 18 adantl φ A = B B A = B B
20 11 17 19 syl2anc φ A B ¬ A < B B A = B B
21 8 10 20 3eqtr4d φ A B ¬ A < B if A < B B A 0 = B A
22 4 21 pm2.61dan φ A B if A < B B A 0 = B A
23 22 eqcomd φ A B B A = if A < B B A 0
24 1 adantr φ A B A
25 2 adantr φ A B B
26 volioo A B A B vol A B = B A
27 24 25 14 26 syl3anc φ A B vol A B = B A
28 volico A B vol A B = if A < B B A 0
29 1 2 28 syl2anc φ vol A B = if A < B B A 0
30 29 adantr φ A B vol A B = if A < B B A 0
31 23 27 30 3eqtr4d φ A B vol A B = vol A B
32 simpl φ ¬ A B φ
33 simpr φ ¬ A B ¬ A B
34 32 2 syl φ ¬ A B B
35 32 1 syl φ ¬ A B A
36 34 35 ltnled φ ¬ A B B < A ¬ A B
37 33 36 mpbird φ ¬ A B B < A
38 2 adantr φ B < A B
39 1 adantr φ B < A A
40 simpr φ B < A B < A
41 38 39 40 ltled φ B < A B A
42 39 rexrd φ B < A A *
43 38 rexrd φ B < A B *
44 ioo0 A * B * A B = B A
45 42 43 44 syl2anc φ B < A A B = B A
46 41 45 mpbird φ B < A A B =
47 ico0 A * B * A B = B A
48 42 43 47 syl2anc φ B < A A B = B A
49 41 48 mpbird φ B < A A B =
50 46 49 eqtr4d φ B < A A B = A B
51 50 fveq2d φ B < A vol A B = vol A B
52 32 37 51 syl2anc φ ¬ A B vol A B = vol A B
53 31 52 pm2.61dan φ vol A B = vol A B