| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismbl3 |  |-  ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 2 |  | elpwi |  |-  ( x e. ~P RR -> x C_ RR ) | 
						
							| 3 |  | ovolcl |  |-  ( x C_ RR -> ( vol* ` x ) e. RR* ) | 
						
							| 4 | 2 3 | syl |  |-  ( x e. ~P RR -> ( vol* ` x ) e. RR* ) | 
						
							| 5 | 4 | adantr |  |-  ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( vol* ` x ) e. RR* ) | 
						
							| 6 |  | inss1 |  |-  ( x i^i A ) C_ x | 
						
							| 7 | 6 2 | sstrid |  |-  ( x e. ~P RR -> ( x i^i A ) C_ RR ) | 
						
							| 8 |  | ovolcl |  |-  ( ( x i^i A ) C_ RR -> ( vol* ` ( x i^i A ) ) e. RR* ) | 
						
							| 9 | 7 8 | syl |  |-  ( x e. ~P RR -> ( vol* ` ( x i^i A ) ) e. RR* ) | 
						
							| 10 | 2 | ssdifssd |  |-  ( x e. ~P RR -> ( x \ A ) C_ RR ) | 
						
							| 11 |  | ovolcl |  |-  ( ( x \ A ) C_ RR -> ( vol* ` ( x \ A ) ) e. RR* ) | 
						
							| 12 | 10 11 | syl |  |-  ( x e. ~P RR -> ( vol* ` ( x \ A ) ) e. RR* ) | 
						
							| 13 | 9 12 | xaddcld |  |-  ( x e. ~P RR -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) e. RR* ) | 
						
							| 14 | 13 | adantr |  |-  ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) e. RR* ) | 
						
							| 15 | 2 | ovolsplit |  |-  ( x e. ~P RR -> ( vol* ` x ) <_ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( vol* ` x ) <_ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 17 |  | simpr |  |-  ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 18 | 5 14 16 17 | xrletrid |  |-  ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 19 | 18 | ex |  |-  ( x e. ~P RR -> ( ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) ) | 
						
							| 20 | 13 | xrleidd |  |-  ( x e. ~P RR -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 22 |  | id |  |-  ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) = ( vol* ` x ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) = ( vol* ` x ) ) | 
						
							| 25 | 21 24 | breqtrd |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 26 | 25 | ex |  |-  ( x e. ~P RR -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 27 | 19 26 | impbid |  |-  ( x e. ~P RR -> ( ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) <-> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) ) | 
						
							| 28 | 27 | ralbiia |  |-  ( A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) <-> A. x e. ~P RR ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 29 | 28 | anbi2i |  |-  ( ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) <-> ( A C_ RR /\ A. x e. ~P RR ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) ) | 
						
							| 30 | 1 29 | bitri |  |-  ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) ) |