| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolsplit.1 |
|- ( ph -> A C_ RR ) |
| 2 |
|
inundif |
|- ( ( A i^i B ) u. ( A \ B ) ) = A |
| 3 |
2
|
eqcomi |
|- A = ( ( A i^i B ) u. ( A \ B ) ) |
| 4 |
3
|
a1i |
|- ( ph -> A = ( ( A i^i B ) u. ( A \ B ) ) ) |
| 5 |
4
|
fveq2d |
|- ( ph -> ( vol* ` A ) = ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) ) |
| 6 |
1
|
ssinss1d |
|- ( ph -> ( A i^i B ) C_ RR ) |
| 7 |
1
|
ssdifssd |
|- ( ph -> ( A \ B ) C_ RR ) |
| 8 |
6 7
|
unssd |
|- ( ph -> ( ( A i^i B ) u. ( A \ B ) ) C_ RR ) |
| 9 |
|
ovolcl |
|- ( ( ( A i^i B ) u. ( A \ B ) ) C_ RR -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) e. RR* ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) e. RR* ) |
| 11 |
|
pnfge |
|- ( ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) e. RR* -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ +oo ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ +oo ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ +oo ) |
| 14 |
|
oveq1 |
|- ( ( vol* ` ( A i^i B ) ) = +oo -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( +oo +e ( vol* ` ( A \ B ) ) ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( +oo +e ( vol* ` ( A \ B ) ) ) ) |
| 16 |
|
ovolcl |
|- ( ( A \ B ) C_ RR -> ( vol* ` ( A \ B ) ) e. RR* ) |
| 17 |
7 16
|
syl |
|- ( ph -> ( vol* ` ( A \ B ) ) e. RR* ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) e. RR* ) |
| 19 |
|
reex |
|- RR e. _V |
| 20 |
19
|
a1i |
|- ( ph -> RR e. _V ) |
| 21 |
20 1
|
ssexd |
|- ( ph -> A e. _V ) |
| 22 |
21
|
difexd |
|- ( ph -> ( A \ B ) e. _V ) |
| 23 |
|
elpwg |
|- ( ( A \ B ) e. _V -> ( ( A \ B ) e. ~P RR <-> ( A \ B ) C_ RR ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( ( A \ B ) e. ~P RR <-> ( A \ B ) C_ RR ) ) |
| 25 |
7 24
|
mpbird |
|- ( ph -> ( A \ B ) e. ~P RR ) |
| 26 |
|
ovolf |
|- vol* : ~P RR --> ( 0 [,] +oo ) |
| 27 |
26
|
ffvelcdmi |
|- ( ( A \ B ) e. ~P RR -> ( vol* ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
| 28 |
25 27
|
syl |
|- ( ph -> ( vol* ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
| 29 |
28
|
xrge0nemnfd |
|- ( ph -> ( vol* ` ( A \ B ) ) =/= -oo ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) =/= -oo ) |
| 31 |
|
xaddpnf2 |
|- ( ( ( vol* ` ( A \ B ) ) e. RR* /\ ( vol* ` ( A \ B ) ) =/= -oo ) -> ( +oo +e ( vol* ` ( A \ B ) ) ) = +oo ) |
| 32 |
18 30 31
|
syl2anc |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( +oo +e ( vol* ` ( A \ B ) ) ) = +oo ) |
| 33 |
15 32
|
eqtr2d |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> +oo = ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 34 |
13 33
|
breqtrd |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 35 |
|
simpl |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ph ) |
| 36 |
20 6
|
sselpwd |
|- ( ph -> ( A i^i B ) e. ~P RR ) |
| 37 |
26
|
ffvelcdmi |
|- ( ( A i^i B ) e. ~P RR -> ( vol* ` ( A i^i B ) ) e. ( 0 [,] +oo ) ) |
| 38 |
36 37
|
syl |
|- ( ph -> ( vol* ` ( A i^i B ) ) e. ( 0 [,] +oo ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A i^i B ) ) e. ( 0 [,] +oo ) ) |
| 40 |
|
neqne |
|- ( -. ( vol* ` ( A i^i B ) ) = +oo -> ( vol* ` ( A i^i B ) ) =/= +oo ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A i^i B ) ) =/= +oo ) |
| 42 |
|
ge0xrre |
|- ( ( ( vol* ` ( A i^i B ) ) e. ( 0 [,] +oo ) /\ ( vol* ` ( A i^i B ) ) =/= +oo ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
| 43 |
39 41 42
|
syl2anc |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
| 44 |
12
|
adantr |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ +oo ) |
| 45 |
|
oveq2 |
|- ( ( vol* ` ( A \ B ) ) = +oo -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) +e +oo ) ) |
| 46 |
45
|
adantl |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) +e +oo ) ) |
| 47 |
|
ovolcl |
|- ( ( A i^i B ) C_ RR -> ( vol* ` ( A i^i B ) ) e. RR* ) |
| 48 |
6 47
|
syl |
|- ( ph -> ( vol* ` ( A i^i B ) ) e. RR* ) |
| 49 |
38
|
xrge0nemnfd |
|- ( ph -> ( vol* ` ( A i^i B ) ) =/= -oo ) |
| 50 |
|
xaddpnf1 |
|- ( ( ( vol* ` ( A i^i B ) ) e. RR* /\ ( vol* ` ( A i^i B ) ) =/= -oo ) -> ( ( vol* ` ( A i^i B ) ) +e +oo ) = +oo ) |
| 51 |
48 49 50
|
syl2anc |
|- ( ph -> ( ( vol* ` ( A i^i B ) ) +e +oo ) = +oo ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( ( vol* ` ( A i^i B ) ) +e +oo ) = +oo ) |
| 53 |
46 52
|
eqtr2d |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> +oo = ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 54 |
44 53
|
breqtrd |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 55 |
54
|
adantlr |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 56 |
|
simpll |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ph ) |
| 57 |
|
simplr |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
| 58 |
28
|
adantr |
|- ( ( ph /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
| 59 |
|
neqne |
|- ( -. ( vol* ` ( A \ B ) ) = +oo -> ( vol* ` ( A \ B ) ) =/= +oo ) |
| 60 |
59
|
adantl |
|- ( ( ph /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) =/= +oo ) |
| 61 |
|
ge0xrre |
|- ( ( ( vol* ` ( A \ B ) ) e. ( 0 [,] +oo ) /\ ( vol* ` ( A \ B ) ) =/= +oo ) -> ( vol* ` ( A \ B ) ) e. RR ) |
| 62 |
58 60 61
|
syl2anc |
|- ( ( ph /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) e. RR ) |
| 63 |
62
|
adantlr |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) e. RR ) |
| 64 |
6
|
3ad2ant1 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( A i^i B ) C_ RR ) |
| 65 |
|
simp2 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
| 66 |
7
|
3ad2ant1 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( A \ B ) C_ RR ) |
| 67 |
|
simp3 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( vol* ` ( A \ B ) ) e. RR ) |
| 68 |
|
ovolun |
|- ( ( ( ( A i^i B ) C_ RR /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ ( ( A \ B ) C_ RR /\ ( vol* ` ( A \ B ) ) e. RR ) ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) ) |
| 69 |
64 65 66 67 68
|
syl22anc |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) ) |
| 70 |
|
rexadd |
|- ( ( ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) ) |
| 71 |
70
|
eqcomd |
|- ( ( ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 72 |
71
|
3adant1 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 73 |
69 72
|
breqtrd |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 74 |
56 57 63 73
|
syl3anc |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 75 |
55 74
|
pm2.61dan |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 76 |
35 43 75
|
syl2anc |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 77 |
34 76
|
pm2.61dan |
|- ( ph -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
| 78 |
5 77
|
eqbrtrd |
|- ( ph -> ( vol* ` A ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |