Step |
Hyp |
Ref |
Expression |
1 |
|
ovolsplit.1 |
|- ( ph -> A C_ RR ) |
2 |
|
inundif |
|- ( ( A i^i B ) u. ( A \ B ) ) = A |
3 |
2
|
eqcomi |
|- A = ( ( A i^i B ) u. ( A \ B ) ) |
4 |
3
|
a1i |
|- ( ph -> A = ( ( A i^i B ) u. ( A \ B ) ) ) |
5 |
4
|
fveq2d |
|- ( ph -> ( vol* ` A ) = ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) ) |
6 |
1
|
ssinss1d |
|- ( ph -> ( A i^i B ) C_ RR ) |
7 |
1
|
ssdifssd |
|- ( ph -> ( A \ B ) C_ RR ) |
8 |
6 7
|
unssd |
|- ( ph -> ( ( A i^i B ) u. ( A \ B ) ) C_ RR ) |
9 |
|
ovolcl |
|- ( ( ( A i^i B ) u. ( A \ B ) ) C_ RR -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) e. RR* ) |
10 |
8 9
|
syl |
|- ( ph -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) e. RR* ) |
11 |
|
pnfge |
|- ( ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) e. RR* -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ +oo ) |
12 |
10 11
|
syl |
|- ( ph -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ +oo ) |
13 |
12
|
adantr |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ +oo ) |
14 |
|
oveq1 |
|- ( ( vol* ` ( A i^i B ) ) = +oo -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( +oo +e ( vol* ` ( A \ B ) ) ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( +oo +e ( vol* ` ( A \ B ) ) ) ) |
16 |
|
ovolcl |
|- ( ( A \ B ) C_ RR -> ( vol* ` ( A \ B ) ) e. RR* ) |
17 |
7 16
|
syl |
|- ( ph -> ( vol* ` ( A \ B ) ) e. RR* ) |
18 |
17
|
adantr |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) e. RR* ) |
19 |
|
reex |
|- RR e. _V |
20 |
19
|
a1i |
|- ( ph -> RR e. _V ) |
21 |
20 1
|
ssexd |
|- ( ph -> A e. _V ) |
22 |
21
|
difexd |
|- ( ph -> ( A \ B ) e. _V ) |
23 |
|
elpwg |
|- ( ( A \ B ) e. _V -> ( ( A \ B ) e. ~P RR <-> ( A \ B ) C_ RR ) ) |
24 |
22 23
|
syl |
|- ( ph -> ( ( A \ B ) e. ~P RR <-> ( A \ B ) C_ RR ) ) |
25 |
7 24
|
mpbird |
|- ( ph -> ( A \ B ) e. ~P RR ) |
26 |
|
ovolf |
|- vol* : ~P RR --> ( 0 [,] +oo ) |
27 |
26
|
ffvelrni |
|- ( ( A \ B ) e. ~P RR -> ( vol* ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
28 |
25 27
|
syl |
|- ( ph -> ( vol* ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
29 |
28
|
xrge0nemnfd |
|- ( ph -> ( vol* ` ( A \ B ) ) =/= -oo ) |
30 |
29
|
adantr |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) =/= -oo ) |
31 |
|
xaddpnf2 |
|- ( ( ( vol* ` ( A \ B ) ) e. RR* /\ ( vol* ` ( A \ B ) ) =/= -oo ) -> ( +oo +e ( vol* ` ( A \ B ) ) ) = +oo ) |
32 |
18 30 31
|
syl2anc |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( +oo +e ( vol* ` ( A \ B ) ) ) = +oo ) |
33 |
15 32
|
eqtr2d |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> +oo = ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
34 |
13 33
|
breqtrd |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
35 |
|
simpl |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ph ) |
36 |
20 6
|
sselpwd |
|- ( ph -> ( A i^i B ) e. ~P RR ) |
37 |
26
|
ffvelrni |
|- ( ( A i^i B ) e. ~P RR -> ( vol* ` ( A i^i B ) ) e. ( 0 [,] +oo ) ) |
38 |
36 37
|
syl |
|- ( ph -> ( vol* ` ( A i^i B ) ) e. ( 0 [,] +oo ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A i^i B ) ) e. ( 0 [,] +oo ) ) |
40 |
|
neqne |
|- ( -. ( vol* ` ( A i^i B ) ) = +oo -> ( vol* ` ( A i^i B ) ) =/= +oo ) |
41 |
40
|
adantl |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A i^i B ) ) =/= +oo ) |
42 |
|
ge0xrre |
|- ( ( ( vol* ` ( A i^i B ) ) e. ( 0 [,] +oo ) /\ ( vol* ` ( A i^i B ) ) =/= +oo ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
43 |
39 41 42
|
syl2anc |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
44 |
12
|
adantr |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ +oo ) |
45 |
|
oveq2 |
|- ( ( vol* ` ( A \ B ) ) = +oo -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) +e +oo ) ) |
46 |
45
|
adantl |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) +e +oo ) ) |
47 |
|
ovolcl |
|- ( ( A i^i B ) C_ RR -> ( vol* ` ( A i^i B ) ) e. RR* ) |
48 |
6 47
|
syl |
|- ( ph -> ( vol* ` ( A i^i B ) ) e. RR* ) |
49 |
38
|
xrge0nemnfd |
|- ( ph -> ( vol* ` ( A i^i B ) ) =/= -oo ) |
50 |
|
xaddpnf1 |
|- ( ( ( vol* ` ( A i^i B ) ) e. RR* /\ ( vol* ` ( A i^i B ) ) =/= -oo ) -> ( ( vol* ` ( A i^i B ) ) +e +oo ) = +oo ) |
51 |
48 49 50
|
syl2anc |
|- ( ph -> ( ( vol* ` ( A i^i B ) ) +e +oo ) = +oo ) |
52 |
51
|
adantr |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( ( vol* ` ( A i^i B ) ) +e +oo ) = +oo ) |
53 |
46 52
|
eqtr2d |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> +oo = ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
54 |
44 53
|
breqtrd |
|- ( ( ph /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
55 |
54
|
adantlr |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
56 |
|
simpll |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ph ) |
57 |
|
simplr |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
58 |
28
|
adantr |
|- ( ( ph /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
59 |
|
neqne |
|- ( -. ( vol* ` ( A \ B ) ) = +oo -> ( vol* ` ( A \ B ) ) =/= +oo ) |
60 |
59
|
adantl |
|- ( ( ph /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) =/= +oo ) |
61 |
|
ge0xrre |
|- ( ( ( vol* ` ( A \ B ) ) e. ( 0 [,] +oo ) /\ ( vol* ` ( A \ B ) ) =/= +oo ) -> ( vol* ` ( A \ B ) ) e. RR ) |
62 |
58 60 61
|
syl2anc |
|- ( ( ph /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) e. RR ) |
63 |
62
|
adantlr |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( A \ B ) ) e. RR ) |
64 |
6
|
3ad2ant1 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( A i^i B ) C_ RR ) |
65 |
|
simp2 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
66 |
7
|
3ad2ant1 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( A \ B ) C_ RR ) |
67 |
|
simp3 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( vol* ` ( A \ B ) ) e. RR ) |
68 |
|
ovolun |
|- ( ( ( ( A i^i B ) C_ RR /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ ( ( A \ B ) C_ RR /\ ( vol* ` ( A \ B ) ) e. RR ) ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) ) |
69 |
64 65 66 67 68
|
syl22anc |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) ) |
70 |
|
rexadd |
|- ( ( ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) ) |
71 |
70
|
eqcomd |
|- ( ( ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
72 |
71
|
3adant1 |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( ( vol* ` ( A i^i B ) ) + ( vol* ` ( A \ B ) ) ) = ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
73 |
69 72
|
breqtrd |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR /\ ( vol* ` ( A \ B ) ) e. RR ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
74 |
56 57 63 73
|
syl3anc |
|- ( ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) /\ -. ( vol* ` ( A \ B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
75 |
55 74
|
pm2.61dan |
|- ( ( ph /\ ( vol* ` ( A i^i B ) ) e. RR ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
76 |
35 43 75
|
syl2anc |
|- ( ( ph /\ -. ( vol* ` ( A i^i B ) ) = +oo ) -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
77 |
34 76
|
pm2.61dan |
|- ( ph -> ( vol* ` ( ( A i^i B ) u. ( A \ B ) ) ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |
78 |
5 77
|
eqbrtrd |
|- ( ph -> ( vol* ` A ) <_ ( ( vol* ` ( A i^i B ) ) +e ( vol* ` ( A \ B ) ) ) ) |