| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvvolioof.f |  |-  ( ph -> F : A --> ( RR* X. RR* ) ) | 
						
							| 2 |  | fvvolioof.x |  |-  ( ph -> X e. A ) | 
						
							| 3 | 1 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 4 | 1 | fdmd |  |-  ( ph -> dom F = A ) | 
						
							| 5 | 4 | eqcomd |  |-  ( ph -> A = dom F ) | 
						
							| 6 | 2 5 | eleqtrd |  |-  ( ph -> X e. dom F ) | 
						
							| 7 |  | fvco |  |-  ( ( Fun F /\ X e. dom F ) -> ( ( ( vol o. (,) ) o. F ) ` X ) = ( ( vol o. (,) ) ` ( F ` X ) ) ) | 
						
							| 8 | 3 6 7 | syl2anc |  |-  ( ph -> ( ( ( vol o. (,) ) o. F ) ` X ) = ( ( vol o. (,) ) ` ( F ` X ) ) ) | 
						
							| 9 |  | ioof |  |-  (,) : ( RR* X. RR* ) --> ~P RR | 
						
							| 10 |  | ffun |  |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  Fun (,) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> Fun (,) ) | 
						
							| 13 | 1 2 | ffvelcdmd |  |-  ( ph -> ( F ` X ) e. ( RR* X. RR* ) ) | 
						
							| 14 | 9 | fdmi |  |-  dom (,) = ( RR* X. RR* ) | 
						
							| 15 | 13 14 | eleqtrrdi |  |-  ( ph -> ( F ` X ) e. dom (,) ) | 
						
							| 16 |  | fvco |  |-  ( ( Fun (,) /\ ( F ` X ) e. dom (,) ) -> ( ( vol o. (,) ) ` ( F ` X ) ) = ( vol ` ( (,) ` ( F ` X ) ) ) ) | 
						
							| 17 | 12 15 16 | syl2anc |  |-  ( ph -> ( ( vol o. (,) ) ` ( F ` X ) ) = ( vol ` ( (,) ` ( F ` X ) ) ) ) | 
						
							| 18 |  | df-ov |  |-  ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) = ( (,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) | 
						
							| 19 | 18 | a1i |  |-  ( ph -> ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) = ( (,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) ) | 
						
							| 20 |  | 1st2nd2 |  |-  ( ( F ` X ) e. ( RR* X. RR* ) -> ( F ` X ) = <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) | 
						
							| 21 | 13 20 | syl |  |-  ( ph -> ( F ` X ) = <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ph -> <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. = ( F ` X ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( (,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) = ( (,) ` ( F ` X ) ) ) | 
						
							| 24 | 19 23 | eqtr2d |  |-  ( ph -> ( (,) ` ( F ` X ) ) = ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ph -> ( vol ` ( (,) ` ( F ` X ) ) ) = ( vol ` ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) ) ) | 
						
							| 26 | 8 17 25 | 3eqtrd |  |-  ( ph -> ( ( ( vol o. (,) ) o. F ) ` X ) = ( vol ` ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) ) ) |