Metamath Proof Explorer


Theorem fvvolioof

Description: The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fvvolioof.f φ F : A * × *
fvvolioof.x φ X A
Assertion fvvolioof φ vol . F X = vol 1 st F X 2 nd F X

Proof

Step Hyp Ref Expression
1 fvvolioof.f φ F : A * × *
2 fvvolioof.x φ X A
3 1 ffund φ Fun F
4 1 fdmd φ dom F = A
5 4 eqcomd φ A = dom F
6 2 5 eleqtrd φ X dom F
7 fvco Fun F X dom F vol . F X = vol . F X
8 3 6 7 syl2anc φ vol . F X = vol . F X
9 ioof . : * × * 𝒫
10 ffun . : * × * 𝒫 Fun .
11 9 10 ax-mp Fun .
12 11 a1i φ Fun .
13 1 2 ffvelrnd φ F X * × *
14 9 fdmi dom . = * × *
15 13 14 eleqtrrdi φ F X dom .
16 fvco Fun . F X dom . vol . F X = vol . F X
17 12 15 16 syl2anc φ vol . F X = vol . F X
18 df-ov 1 st F X 2 nd F X = . 1 st F X 2 nd F X
19 18 a1i φ 1 st F X 2 nd F X = . 1 st F X 2 nd F X
20 1st2nd2 F X * × * F X = 1 st F X 2 nd F X
21 13 20 syl φ F X = 1 st F X 2 nd F X
22 21 eqcomd φ 1 st F X 2 nd F X = F X
23 22 fveq2d φ . 1 st F X 2 nd F X = . F X
24 19 23 eqtr2d φ . F X = 1 st F X 2 nd F X
25 24 fveq2d φ vol . F X = vol 1 st F X 2 nd F X
26 8 17 25 3eqtrd φ vol . F X = vol 1 st F X 2 nd F X