Metamath Proof Explorer


Theorem fvvolioof

Description: The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fvvolioof.f φF:A*×*
fvvolioof.x φXA
Assertion fvvolioof φvol.FX=vol1stFX2ndFX

Proof

Step Hyp Ref Expression
1 fvvolioof.f φF:A*×*
2 fvvolioof.x φXA
3 1 ffund φFunF
4 1 fdmd φdomF=A
5 4 eqcomd φA=domF
6 2 5 eleqtrd φXdomF
7 fvco FunFXdomFvol.FX=vol.FX
8 3 6 7 syl2anc φvol.FX=vol.FX
9 ioof .:*×*𝒫
10 ffun .:*×*𝒫Fun.
11 9 10 ax-mp Fun.
12 11 a1i φFun.
13 1 2 ffvelcdmd φFX*×*
14 9 fdmi dom.=*×*
15 13 14 eleqtrrdi φFXdom.
16 fvco Fun.FXdom.vol.FX=vol.FX
17 12 15 16 syl2anc φvol.FX=vol.FX
18 df-ov 1stFX2ndFX=.1stFX2ndFX
19 18 a1i φ1stFX2ndFX=.1stFX2ndFX
20 1st2nd2 FX*×*FX=1stFX2ndFX
21 13 20 syl φFX=1stFX2ndFX
22 21 eqcomd φ1stFX2ndFX=FX
23 22 fveq2d φ.1stFX2ndFX=.FX
24 19 23 eqtr2d φ.FX=1stFX2ndFX
25 24 fveq2d φvol.FX=vol1stFX2ndFX
26 8 17 25 3eqtrd φvol.FX=vol1stFX2ndFX