| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volioo |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) | 
						
							| 2 | 1 | 3expa |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) | 
						
							| 3 |  | iftrue |  |-  ( A <_ B -> if ( A <_ B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> if ( A <_ B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 5 | 2 4 | eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 6 |  | simpl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( A e. RR /\ B e. RR ) ) | 
						
							| 7 |  | simpr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> -. A <_ B ) | 
						
							| 8 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 9 |  | simpl |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR ) | 
						
							| 10 | 8 9 | ltnled |  |-  ( ( A e. RR /\ B e. RR ) -> ( B < A <-> -. A <_ B ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( B < A <-> -. A <_ B ) ) | 
						
							| 12 | 7 11 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> B < A ) | 
						
							| 13 |  | vol0 |  |-  ( vol ` (/) ) = 0 | 
						
							| 14 | 13 | a1i |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol ` (/) ) = 0 ) | 
						
							| 15 | 8 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B e. RR ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> A e. RR ) | 
						
							| 17 |  | simpr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B < A ) | 
						
							| 18 | 15 16 17 | ltled |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> B <_ A ) | 
						
							| 19 | 9 | rexrd |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR* ) | 
						
							| 20 | 8 | rexrd |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR* ) | 
						
							| 21 |  | ioo0 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) | 
						
							| 22 | 19 20 21 | syl2anc |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) | 
						
							| 24 | 18 23 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( A (,) B ) = (/) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol ` ( A (,) B ) ) = ( vol ` (/) ) ) | 
						
							| 26 | 10 | biimpa |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> -. A <_ B ) | 
						
							| 27 | 26 | iffalsed |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> if ( A <_ B , ( B - A ) , 0 ) = 0 ) | 
						
							| 28 | 14 25 27 | 3eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol ` ( A (,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 29 | 6 12 28 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( vol ` ( A (,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 30 | 5 29 | pm2.61dan |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |