| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volioo | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 2 | 1 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 3 |  | iftrue | ⊢ ( 𝐴  ≤  𝐵  →  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 5 | 2 4 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  ¬  𝐴  ≤  𝐵 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 10 | 8 9 | ltnled | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  <  𝐴  ↔  ¬  𝐴  ≤  𝐵 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  ( 𝐵  <  𝐴  ↔  ¬  𝐴  ≤  𝐵 ) ) | 
						
							| 12 | 7 11 | mpbird | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  𝐵  <  𝐴 ) | 
						
							| 13 |  | vol0 | ⊢ ( vol ‘ ∅ )  =  0 | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  ( vol ‘ ∅ )  =  0 ) | 
						
							| 15 | 8 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 16 | 9 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  𝐵  <  𝐴 ) | 
						
							| 18 | 15 16 17 | ltled | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  𝐵  ≤  𝐴 ) | 
						
							| 19 | 9 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℝ* ) | 
						
							| 20 | 8 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ* ) | 
						
							| 21 |  | ioo0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 (,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴 (,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  ( ( 𝐴 (,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 24 | 18 23 | mpbird | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  ( 𝐴 (,) 𝐵 )  =  ∅ ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  ( vol ‘ ∅ ) ) | 
						
							| 26 | 10 | biimpa | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  ¬  𝐴  ≤  𝐵 ) | 
						
							| 27 | 26 | iffalsed | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  0 ) | 
						
							| 28 | 14 25 27 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐵  <  𝐴 )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 29 | 6 12 28 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 30 | 5 29 | pm2.61dan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) |