| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvvolicof.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( ℝ*  ×  ℝ* ) ) | 
						
							| 2 |  | fvvolicof.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐴 ) | 
						
							| 3 | 1 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 4 | 1 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  dom  𝐹 ) | 
						
							| 6 | 2 5 | eleqtrd | ⊢ ( 𝜑  →  𝑋  ∈  dom  𝐹 ) | 
						
							| 7 |  | fvco | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∈  dom  𝐹 )  →  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑋 )  =  ( ( vol  ∘  [,) ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 8 | 3 6 7 | syl2anc | ⊢ ( 𝜑  →  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑋 )  =  ( ( vol  ∘  [,) ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 9 |  | icof | ⊢ [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* | 
						
							| 10 |  | ffun | ⊢ ( [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ*  →  Fun  [,) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ Fun  [,) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  Fun  [,) ) | 
						
							| 13 | 1 2 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( ℝ*  ×  ℝ* ) ) | 
						
							| 14 | 9 | fdmi | ⊢ dom  [,)  =  ( ℝ*  ×  ℝ* ) | 
						
							| 15 | 13 14 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  dom  [,) ) | 
						
							| 16 |  | fvco | ⊢ ( ( Fun  [,)  ∧  ( 𝐹 ‘ 𝑋 )  ∈  dom  [,) )  →  ( ( vol  ∘  [,) ) ‘ ( 𝐹 ‘ 𝑋 ) )  =  ( vol ‘ ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 17 | 12 15 16 | syl2anc | ⊢ ( 𝜑  →  ( ( vol  ∘  [,) ) ‘ ( 𝐹 ‘ 𝑋 ) )  =  ( vol ‘ ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 18 |  | df-ov | ⊢ ( ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) )  =  ( [,) ‘ 〈 ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) )  =  ( [,) ‘ 〈 ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) ) | 
						
							| 20 |  | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 𝑋 )  ∈  ( ℝ*  ×  ℝ* )  →  ( 𝐹 ‘ 𝑋 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) | 
						
							| 21 | 13 20 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =  〈 ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( 𝜑  →  〈 ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) 〉  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( [,) ‘ 〈 ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 )  =  ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 24 | 19 23 | eqtr2d | ⊢ ( 𝜑  →  ( [,) ‘ ( 𝐹 ‘ 𝑋 ) )  =  ( ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝜑  →  ( vol ‘ ( [,) ‘ ( 𝐹 ‘ 𝑋 ) ) )  =  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 26 | 8 17 25 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑋 )  =  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑋 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |