| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolsplit.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
| 3 |
2
|
eqcomi |
⊢ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 6 |
1
|
ssinss1d |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 7 |
1
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ) |
| 8 |
6 7
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ ℝ ) |
| 9 |
|
ovolcl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ ℝ → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ∈ ℝ* ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ∈ ℝ* ) |
| 11 |
|
pnfge |
⊢ ( ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ∈ ℝ* → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ +∞ ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ +∞ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ +∞ ) |
| 14 |
|
oveq1 |
⊢ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( +∞ +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( +∞ +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 16 |
|
ovolcl |
⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ) |
| 17 |
7 16
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ) |
| 19 |
|
reex |
⊢ ℝ ∈ V |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 21 |
20 1
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 22 |
21
|
difexd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
| 23 |
|
elpwg |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ V → ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 ℝ ↔ ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 ℝ ↔ ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ) ) |
| 25 |
7 24
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 ℝ ) |
| 26 |
|
ovolf |
⊢ vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) |
| 27 |
26
|
ffvelcdmi |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 ℝ → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 28 |
25 27
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 29 |
28
|
xrge0nemnfd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ≠ -∞ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ≠ -∞ ) |
| 31 |
|
xaddpnf2 |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ≠ -∞ ) → ( +∞ +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = +∞ ) |
| 32 |
18 30 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( +∞ +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = +∞ ) |
| 33 |
15 32
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → +∞ = ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 34 |
13 33
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 35 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → 𝜑 ) |
| 36 |
20 6
|
sselpwd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ 𝒫 ℝ ) |
| 37 |
26
|
ffvelcdmi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝒫 ℝ → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 40 |
|
neqne |
⊢ ( ¬ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ≠ +∞ ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ≠ +∞ ) |
| 42 |
|
ge0xrre |
⊢ ( ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ≠ +∞ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 43 |
39 41 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 44 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ +∞ ) |
| 45 |
|
oveq2 |
⊢ ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 +∞ ) ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 +∞ ) ) |
| 47 |
|
ovolcl |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ* ) |
| 48 |
6 47
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ* ) |
| 49 |
38
|
xrge0nemnfd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ≠ -∞ ) |
| 50 |
|
xaddpnf1 |
⊢ ( ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ≠ -∞ ) → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 +∞ ) = +∞ ) |
| 51 |
48 49 50
|
syl2anc |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 +∞ ) = +∞ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 +∞ ) = +∞ ) |
| 53 |
46 52
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → +∞ = ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 54 |
44 53
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 55 |
54
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 56 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) ∧ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → 𝜑 ) |
| 57 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) ∧ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 58 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 59 |
|
neqne |
⊢ ( ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ≠ +∞ ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ≠ +∞ ) |
| 61 |
|
ge0xrre |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ≠ +∞ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 62 |
58 60 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 63 |
62
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) ∧ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 64 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 65 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 66 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ) |
| 67 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 68 |
|
ovolun |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 69 |
64 65 66 67 68
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 70 |
|
rexadd |
⊢ ( ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 71 |
70
|
eqcomd |
⊢ ( ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 72 |
71
|
3adant1 |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 73 |
69 72
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 74 |
56 57 63 73
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) ∧ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 75 |
55 74
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 76 |
35 43 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = +∞ ) → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 77 |
34 76
|
pm2.61dan |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 78 |
5 77
|
eqbrtrd |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ≤ ( ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) +𝑒 ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |