| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismbl2 |  |-  ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) | 
						
							| 2 |  | inss1 |  |-  ( x i^i A ) C_ x | 
						
							| 3 | 2 | a1i |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( x i^i A ) C_ x ) | 
						
							| 4 |  | elpwi |  |-  ( x e. ~P RR -> x C_ RR ) | 
						
							| 5 | 4 | adantr |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) | 
						
							| 6 |  | simpr |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. RR ) | 
						
							| 7 |  | ovolsscl |  |-  ( ( ( x i^i A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) | 
						
							| 8 | 3 5 6 7 | syl3anc |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) | 
						
							| 9 |  | difssd |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( x \ A ) C_ x ) | 
						
							| 10 |  | ovolsscl |  |-  ( ( ( x \ A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) | 
						
							| 11 | 9 5 6 10 | syl3anc |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) | 
						
							| 12 | 8 11 | rexaddd |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) | 
						
							| 13 | 12 | adantlr |  |-  ( ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) | 
						
							| 14 |  | id |  |-  ( ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 16 | 15 | adantll |  |-  ( ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 17 | 13 16 | eqbrtrd |  |-  ( ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 18 | 2 4 | sstrid |  |-  ( x e. ~P RR -> ( x i^i A ) C_ RR ) | 
						
							| 19 |  | ovolcl |  |-  ( ( x i^i A ) C_ RR -> ( vol* ` ( x i^i A ) ) e. RR* ) | 
						
							| 20 | 18 19 | syl |  |-  ( x e. ~P RR -> ( vol* ` ( x i^i A ) ) e. RR* ) | 
						
							| 21 | 4 | ssdifssd |  |-  ( x e. ~P RR -> ( x \ A ) C_ RR ) | 
						
							| 22 |  | ovolcl |  |-  ( ( x \ A ) C_ RR -> ( vol* ` ( x \ A ) ) e. RR* ) | 
						
							| 23 | 21 22 | syl |  |-  ( x e. ~P RR -> ( vol* ` ( x \ A ) ) e. RR* ) | 
						
							| 24 | 20 23 | xaddcld |  |-  ( x e. ~P RR -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) e. RR* ) | 
						
							| 25 |  | pnfge |  |-  ( ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) e. RR* -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ +oo ) | 
						
							| 26 | 24 25 | syl |  |-  ( x e. ~P RR -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ +oo ) | 
						
							| 27 | 26 | adantr |  |-  ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ +oo ) | 
						
							| 28 |  | ovolf |  |-  vol* : ~P RR --> ( 0 [,] +oo ) | 
						
							| 29 | 28 | ffvelcdmi |  |-  ( x e. ~P RR -> ( vol* ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 31 |  | simpr |  |-  ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> -. ( vol* ` x ) e. RR ) | 
						
							| 32 |  | xrge0nre |  |-  ( ( ( vol* ` x ) e. ( 0 [,] +oo ) /\ -. ( vol* ` x ) e. RR ) -> ( vol* ` x ) = +oo ) | 
						
							| 33 | 30 31 32 | syl2anc |  |-  ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> ( vol* ` x ) = +oo ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> +oo = ( vol* ` x ) ) | 
						
							| 35 | 27 34 | breqtrd |  |-  ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 36 | 35 | adantlr |  |-  ( ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) /\ -. ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 37 | 17 36 | pm2.61dan |  |-  ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 38 | 37 | ex |  |-  ( x e. ~P RR -> ( ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 39 | 12 | eqcomd |  |-  ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 40 | 39 | 3adant2 |  |-  ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) | 
						
							| 41 |  | simp2 |  |-  ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 42 | 40 41 | eqbrtrd |  |-  ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 43 | 42 | 3exp |  |-  ( x e. ~P RR -> ( ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) | 
						
							| 44 | 38 43 | impbid |  |-  ( x e. ~P RR -> ( ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) <-> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 45 | 44 | ralbiia |  |-  ( A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) <-> A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) | 
						
							| 46 | 45 | anbi2i |  |-  ( ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) | 
						
							| 47 | 1 46 | bitri |  |-  ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |