| Step |
Hyp |
Ref |
Expression |
| 1 |
|
volioofmpt.x |
|- F/_ x F |
| 2 |
|
volioofmpt.f |
|- ( ph -> F : A --> ( RR* X. RR* ) ) |
| 3 |
|
nfcv |
|- F/_ x A |
| 4 |
|
nfcv |
|- F/_ x ( vol o. (,) ) |
| 5 |
4 1
|
nfco |
|- F/_ x ( ( vol o. (,) ) o. F ) |
| 6 |
|
volioof |
|- ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) |
| 7 |
6
|
a1i |
|- ( ph -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) |
| 8 |
|
fco |
|- ( ( ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) /\ F : A --> ( RR* X. RR* ) ) -> ( ( vol o. (,) ) o. F ) : A --> ( 0 [,] +oo ) ) |
| 9 |
7 2 8
|
syl2anc |
|- ( ph -> ( ( vol o. (,) ) o. F ) : A --> ( 0 [,] +oo ) ) |
| 10 |
3 5 9
|
feqmptdf |
|- ( ph -> ( ( vol o. (,) ) o. F ) = ( x e. A |-> ( ( ( vol o. (,) ) o. F ) ` x ) ) ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> F : A --> ( RR* X. RR* ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 13 |
11 12
|
fvvolioof |
|- ( ( ph /\ x e. A ) -> ( ( ( vol o. (,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) |
| 14 |
13
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( ( vol o. (,) ) o. F ) ` x ) ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) ) |
| 15 |
10 14
|
eqtrd |
|- ( ph -> ( ( vol o. (,) ) o. F ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) ) |