Metamath Proof Explorer


Theorem volioofmpt

Description: ( ( vol o. (,) ) o. F ) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses volioofmpt.x _xF
volioofmpt.f φF:A*×*
Assertion volioofmpt φvol.F=xAvol1stFx2ndFx

Proof

Step Hyp Ref Expression
1 volioofmpt.x _xF
2 volioofmpt.f φF:A*×*
3 nfcv _xA
4 nfcv _xvol.
5 4 1 nfco _xvol.F
6 volioof vol.:*×*0+∞
7 6 a1i φvol.:*×*0+∞
8 fco vol.:*×*0+∞F:A*×*vol.F:A0+∞
9 7 2 8 syl2anc φvol.F:A0+∞
10 3 5 9 feqmptdf φvol.F=xAvol.Fx
11 2 adantr φxAF:A*×*
12 simpr φxAxA
13 11 12 fvvolioof φxAvol.Fx=vol1stFx2ndFx
14 13 mpteq2dva φxAvol.Fx=xAvol1stFx2ndFx
15 10 14 eqtrd φvol.F=xAvol1stFx2ndFx