| Step |
Hyp |
Ref |
Expression |
| 1 |
|
volioofmpt.x |
⊢ Ⅎ 𝑥 𝐹 |
| 2 |
|
volioofmpt.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) ) |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 ( vol ∘ (,) ) |
| 5 |
4 1
|
nfco |
⊢ Ⅎ 𝑥 ( ( vol ∘ (,) ) ∘ 𝐹 ) |
| 6 |
|
volioof |
⊢ ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) ) |
| 8 |
|
fco |
⊢ ( ( ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) ∧ 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) ) → ( ( vol ∘ (,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 9 |
7 2 8
|
syl2anc |
⊢ ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 10 |
3 5 9
|
feqmptdf |
⊢ ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 13 |
11 12
|
fvvolioof |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 14 |
13
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 15 |
10 14
|
eqtrd |
⊢ ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |