| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 2 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 3 |  | ffn | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ  →  (,)  Fn  ( ℝ*  ×  ℝ* ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ (,)  Fn  ( ℝ*  ×  ℝ* ) | 
						
							| 5 |  | df-ov | ⊢ ( ( 1st  ‘ 𝑥 ) (,) ( 2nd  ‘ 𝑥 ) )  =  ( (,) ‘ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑥  ∈  ( ℝ*  ×  ℝ* )  →  ( ( 1st  ‘ 𝑥 ) (,) ( 2nd  ‘ 𝑥 ) )  =  ( (,) ‘ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) ) | 
						
							| 7 |  | 1st2nd2 | ⊢ ( 𝑥  ∈  ( ℝ*  ×  ℝ* )  →  𝑥  =  〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( 𝑥  ∈  ( ℝ*  ×  ℝ* )  →  〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉  =  𝑥 ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑥  ∈  ( ℝ*  ×  ℝ* )  →  ( (,) ‘ 〈 ( 1st  ‘ 𝑥 ) ,  ( 2nd  ‘ 𝑥 ) 〉 )  =  ( (,) ‘ 𝑥 ) ) | 
						
							| 10 | 6 9 | eqtr2d | ⊢ ( 𝑥  ∈  ( ℝ*  ×  ℝ* )  →  ( (,) ‘ 𝑥 )  =  ( ( 1st  ‘ 𝑥 ) (,) ( 2nd  ‘ 𝑥 ) ) ) | 
						
							| 11 |  | ioombl | ⊢ ( ( 1st  ‘ 𝑥 ) (,) ( 2nd  ‘ 𝑥 ) )  ∈  dom  vol | 
						
							| 12 | 10 11 | eqeltrdi | ⊢ ( 𝑥  ∈  ( ℝ*  ×  ℝ* )  →  ( (,) ‘ 𝑥 )  ∈  dom  vol ) | 
						
							| 13 | 12 | rgen | ⊢ ∀ 𝑥  ∈  ( ℝ*  ×  ℝ* ) ( (,) ‘ 𝑥 )  ∈  dom  vol | 
						
							| 14 | 4 13 | pm3.2i | ⊢ ( (,)  Fn  ( ℝ*  ×  ℝ* )  ∧  ∀ 𝑥  ∈  ( ℝ*  ×  ℝ* ) ( (,) ‘ 𝑥 )  ∈  dom  vol ) | 
						
							| 15 |  | ffnfv | ⊢ ( (,) : ( ℝ*  ×  ℝ* ) ⟶ dom  vol  ↔  ( (,)  Fn  ( ℝ*  ×  ℝ* )  ∧  ∀ 𝑥  ∈  ( ℝ*  ×  ℝ* ) ( (,) ‘ 𝑥 )  ∈  dom  vol ) ) | 
						
							| 16 | 14 15 | mpbir | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ dom  vol | 
						
							| 17 |  | fco | ⊢ ( ( vol : dom  vol ⟶ ( 0 [,] +∞ )  ∧  (,) : ( ℝ*  ×  ℝ* ) ⟶ dom  vol )  →  ( vol  ∘  (,) ) : ( ℝ*  ×  ℝ* ) ⟶ ( 0 [,] +∞ ) ) | 
						
							| 18 | 1 16 17 | mp2an | ⊢ ( vol  ∘  (,) ) : ( ℝ*  ×  ℝ* ) ⟶ ( 0 [,] +∞ ) |