| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volicofmpt.1 |  |-  F/_ x F | 
						
							| 2 |  | volicofmpt.2 |  |-  ( ph -> F : A --> ( RR X. RR* ) ) | 
						
							| 3 |  | nfcv |  |-  F/_ x A | 
						
							| 4 |  | nfcv |  |-  F/_ x ( vol o. [,) ) | 
						
							| 5 | 4 1 | nfco |  |-  F/_ x ( ( vol o. [,) ) o. F ) | 
						
							| 6 | 2 | volicoff |  |-  ( ph -> ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) ) | 
						
							| 7 | 3 5 6 | feqmptdf |  |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( x e. A |-> ( ( ( vol o. [,) ) o. F ) ` x ) ) ) | 
						
							| 8 |  | ressxr |  |-  RR C_ RR* | 
						
							| 9 |  | xpss1 |  |-  ( RR C_ RR* -> ( RR X. RR* ) C_ ( RR* X. RR* ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( RR X. RR* ) C_ ( RR* X. RR* ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( RR X. RR* ) C_ ( RR* X. RR* ) ) | 
						
							| 12 | 2 11 | fssd |  |-  ( ph -> F : A --> ( RR* X. RR* ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ x e. A ) -> F : A --> ( RR* X. RR* ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 15 | 13 14 | fvvolicof |  |-  ( ( ph /\ x e. A ) -> ( ( ( vol o. [,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) | 
						
							| 16 | 15 | mpteq2dva |  |-  ( ph -> ( x e. A |-> ( ( ( vol o. [,) ) o. F ) ` x ) ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) ) | 
						
							| 17 | 7 16 | eqtrd |  |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( x e. A |-> ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) ) |