| Step |
Hyp |
Ref |
Expression |
| 1 |
|
voliooicof.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( ℝ × ℝ ) ) |
| 2 |
|
volioof |
⊢ ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) |
| 3 |
2
|
a1i |
⊢ ( 𝜑 → ( vol ∘ (,) ) : ( ℝ* × ℝ* ) ⟶ ( 0 [,] +∞ ) ) |
| 4 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) |
| 6 |
3 5 1
|
fcoss |
⊢ ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 7 |
6
|
ffnd |
⊢ ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) Fn 𝐴 ) |
| 8 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
| 10 |
|
icof |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* ) |
| 12 |
11 5 1
|
fcoss |
⊢ ( 𝜑 → ( [,) ∘ 𝐹 ) : 𝐴 ⟶ 𝒫 ℝ* ) |
| 13 |
12
|
ffnd |
⊢ ( 𝜑 → ( [,) ∘ 𝐹 ) Fn 𝐴 ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ ( ℝ × ℝ ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 16 |
14 15
|
fvovco |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 17 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) ) |
| 18 |
|
xp1st |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 20 |
|
xp2nd |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 21 |
17 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 22 |
21
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 23 |
|
icombl |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ dom vol ) |
| 24 |
19 22 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ dom vol ) |
| 25 |
16 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
| 26 |
25
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
| 27 |
13 26
|
jca |
⊢ ( 𝜑 → ( ( [,) ∘ 𝐹 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) ) |
| 28 |
|
ffnfv |
⊢ ( ( [,) ∘ 𝐹 ) : 𝐴 ⟶ dom vol ↔ ( ( [,) ∘ 𝐹 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( [,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) ) |
| 29 |
27 28
|
sylibr |
⊢ ( 𝜑 → ( [,) ∘ 𝐹 ) : 𝐴 ⟶ dom vol ) |
| 30 |
|
fco |
⊢ ( ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ ( [,) ∘ 𝐹 ) : 𝐴 ⟶ dom vol ) → ( vol ∘ ( [,) ∘ 𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 31 |
9 29 30
|
syl2anc |
⊢ ( 𝜑 → ( vol ∘ ( [,) ∘ 𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 32 |
|
coass |
⊢ ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( vol ∘ ( [,) ∘ 𝐹 ) ) |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( vol ∘ ( [,) ∘ 𝐹 ) ) ) |
| 34 |
33
|
feq1d |
⊢ ( 𝜑 → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ↔ ( vol ∘ ( [,) ∘ 𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) ) |
| 35 |
31 34
|
mpbird |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 36 |
35
|
ffnd |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) Fn 𝐴 ) |
| 37 |
19 21
|
voliooico |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 38 |
1 5
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ ( ℝ* × ℝ* ) ) |
| 40 |
39 15
|
fvvolioof |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 41 |
39 15
|
fvvolicof |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 42 |
37 40 41
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( vol ∘ (,) ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( vol ∘ [,) ) ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 43 |
7 36 42
|
eqfnfvd |
⊢ ( 𝜑 → ( ( vol ∘ (,) ) ∘ 𝐹 ) = ( ( vol ∘ [,) ) ∘ 𝐹 ) ) |