Metamath Proof Explorer


Theorem ovnovollem1

Description: if F is a cover of B in RR , then I is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovollem1.a ( 𝜑𝐴𝑉 )
ovnovollem1.f ( 𝜑𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) )
ovnovollem1.i 𝐼 = ( 𝑗 ∈ ℕ ↦ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
ovnovollem1.s ( 𝜑𝐵 ran ( [,) ∘ 𝐹 ) )
ovnovollem1.b ( 𝜑𝐵𝑊 )
ovnovollem1.z ( 𝜑𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) )
Assertion ovnovollem1 ( 𝜑 → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 ovnovollem1.a ( 𝜑𝐴𝑉 )
2 ovnovollem1.f ( 𝜑𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) )
3 ovnovollem1.i 𝐼 = ( 𝑗 ∈ ℕ ↦ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
4 ovnovollem1.s ( 𝜑𝐵 ran ( [,) ∘ 𝐹 ) )
5 ovnovollem1.b ( 𝜑𝐵𝑊 )
6 ovnovollem1.z ( 𝜑𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) )
7 eqidd ( ( 𝜑𝑗 ∈ ℕ ) → { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } = { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
8 1 adantr ( ( 𝜑𝑗 ∈ ℕ ) → 𝐴𝑉 )
9 elmapi ( 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) )
10 2 9 syl ( 𝜑𝐹 : ℕ ⟶ ( ℝ × ℝ ) )
11 10 ffvelrnda ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ∈ ( ℝ × ℝ ) )
12 fsng ( ( 𝐴𝑉 ∧ ( 𝐹𝑗 ) ∈ ( ℝ × ℝ ) ) → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } : { 𝐴 } ⟶ { ( 𝐹𝑗 ) } ↔ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } = { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) )
13 8 11 12 syl2anc ( ( 𝜑𝑗 ∈ ℕ ) → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } : { 𝐴 } ⟶ { ( 𝐹𝑗 ) } ↔ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } = { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) )
14 7 13 mpbird ( ( 𝜑𝑗 ∈ ℕ ) → { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } : { 𝐴 } ⟶ { ( 𝐹𝑗 ) } )
15 11 snssd ( ( 𝜑𝑗 ∈ ℕ ) → { ( 𝐹𝑗 ) } ⊆ ( ℝ × ℝ ) )
16 14 15 fssd ( ( 𝜑𝑗 ∈ ℕ ) → { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } : { 𝐴 } ⟶ ( ℝ × ℝ ) )
17 reex ℝ ∈ V
18 17 17 xpex ( ℝ × ℝ ) ∈ V
19 18 a1i ( ( 𝜑𝑗 ∈ ℕ ) → ( ℝ × ℝ ) ∈ V )
20 snex { 𝐴 } ∈ V
21 20 a1i ( ( 𝜑𝑗 ∈ ℕ ) → { 𝐴 } ∈ V )
22 19 21 elmapd ( ( 𝜑𝑗 ∈ ℕ ) → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ∈ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↔ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } : { 𝐴 } ⟶ ( ℝ × ℝ ) ) )
23 16 22 mpbird ( ( 𝜑𝑗 ∈ ℕ ) → { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ∈ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) )
24 23 3 fmptd ( 𝜑𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) )
25 ovexd ( 𝜑 → ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ∈ V )
26 nnex ℕ ∈ V
27 26 a1i ( 𝜑 → ℕ ∈ V )
28 25 27 elmapd ( 𝜑 → ( 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ↔ 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ) )
29 24 28 mpbird ( 𝜑𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) )
30 icof [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
31 30 a1i ( 𝜑 → [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* )
32 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
33 32 a1i ( 𝜑 → ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) )
34 31 33 10 fcoss ( 𝜑 → ( [,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ* )
35 34 ffnd ( 𝜑 → ( [,) ∘ 𝐹 ) Fn ℕ )
36 fniunfv ( ( [,) ∘ 𝐹 ) Fn ℕ → 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ran ( [,) ∘ 𝐹 ) )
37 35 36 syl ( 𝜑 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ran ( [,) ∘ 𝐹 ) )
38 37 eqcomd ( 𝜑 ran ( [,) ∘ 𝐹 ) = 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) )
39 4 38 sseqtrd ( 𝜑𝐵 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) )
40 fvex ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V
41 26 40 iunex 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V
42 41 a1i ( 𝜑 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V )
43 20 a1i ( 𝜑 → { 𝐴 } ∈ V )
44 1 snn0d ( 𝜑 → { 𝐴 } ≠ ∅ )
45 5 42 43 44 mapss2 ( 𝜑 → ( 𝐵 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↔ ( 𝐵m { 𝐴 } ) ⊆ ( 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) )
46 39 45 mpbid ( 𝜑 → ( 𝐵m { 𝐴 } ) ⊆ ( 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) )
47 nfv 𝑗 𝜑
48 fvexd ( ( 𝜑𝑗 ∈ ℕ ) → ( [,) ‘ ( 𝐹𝑗 ) ) ∈ V )
49 47 27 48 1 iunmapsn ( 𝜑 𝑗 ∈ ℕ ( ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } ) = ( 𝑗 ∈ ℕ ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } ) )
50 49 eqcomd ( 𝜑 → ( 𝑗 ∈ ℕ ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } ) = 𝑗 ∈ ℕ ( ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } ) )
51 elmapfun ( 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → Fun 𝐹 )
52 2 51 syl ( 𝜑 → Fun 𝐹 )
53 52 adantr ( ( 𝜑𝑗 ∈ ℕ ) → Fun 𝐹 )
54 simpr ( ( 𝜑𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ )
55 10 fdmd ( 𝜑 → dom 𝐹 = ℕ )
56 55 eqcomd ( 𝜑 → ℕ = dom 𝐹 )
57 56 adantr ( ( 𝜑𝑗 ∈ ℕ ) → ℕ = dom 𝐹 )
58 54 57 eleqtrd ( ( 𝜑𝑗 ∈ ℕ ) → 𝑗 ∈ dom 𝐹 )
59 fvco ( ( Fun 𝐹𝑗 ∈ dom 𝐹 ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( [,) ‘ ( 𝐹𝑗 ) ) )
60 53 58 59 syl2anc ( ( 𝜑𝑗 ∈ ℕ ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( [,) ‘ ( 𝐹𝑗 ) ) )
61 60 iuneq2dv ( 𝜑 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = 𝑗 ∈ ℕ ( [,) ‘ ( 𝐹𝑗 ) ) )
62 61 oveq1d ( 𝜑 → ( 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) = ( 𝑗 ∈ ℕ ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } ) )
63 14 ffund ( ( 𝜑𝑗 ∈ ℕ ) → Fun { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
64 id ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ )
65 snex { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ∈ V
66 65 a1i ( 𝑗 ∈ ℕ → { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ∈ V )
67 3 fvmpt2 ( ( 𝑗 ∈ ℕ ∧ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ∈ V ) → ( 𝐼𝑗 ) = { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
68 64 66 67 syl2anc ( 𝑗 ∈ ℕ → ( 𝐼𝑗 ) = { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
69 68 adantl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐼𝑗 ) = { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
70 69 funeqd ( ( 𝜑𝑗 ∈ ℕ ) → ( Fun ( 𝐼𝑗 ) ↔ Fun { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) )
71 63 70 mpbird ( ( 𝜑𝑗 ∈ ℕ ) → Fun ( 𝐼𝑗 ) )
72 71 adantr ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → Fun ( 𝐼𝑗 ) )
73 simpr ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → 𝑘 ∈ { 𝐴 } )
74 69 dmeqd ( ( 𝜑𝑗 ∈ ℕ ) → dom ( 𝐼𝑗 ) = dom { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
75 14 fdmd ( ( 𝜑𝑗 ∈ ℕ ) → dom { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } = { 𝐴 } )
76 74 75 eqtrd ( ( 𝜑𝑗 ∈ ℕ ) → dom ( 𝐼𝑗 ) = { 𝐴 } )
77 76 eleq2d ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝑘 ∈ dom ( 𝐼𝑗 ) ↔ 𝑘 ∈ { 𝐴 } ) )
78 77 adantr ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( 𝑘 ∈ dom ( 𝐼𝑗 ) ↔ 𝑘 ∈ { 𝐴 } ) )
79 73 78 mpbird ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → 𝑘 ∈ dom ( 𝐼𝑗 ) )
80 fvco ( ( Fun ( 𝐼𝑗 ) ∧ 𝑘 ∈ dom ( 𝐼𝑗 ) ) → ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) = ( [,) ‘ ( ( 𝐼𝑗 ) ‘ 𝑘 ) ) )
81 72 79 80 syl2anc ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) = ( [,) ‘ ( ( 𝐼𝑗 ) ‘ 𝑘 ) ) )
82 68 fveq1d ( 𝑗 ∈ ℕ → ( ( 𝐼𝑗 ) ‘ 𝑘 ) = ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝑘 ) )
83 82 ad2antlr ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( 𝐼𝑗 ) ‘ 𝑘 ) = ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝑘 ) )
84 elsni ( 𝑘 ∈ { 𝐴 } → 𝑘 = 𝐴 )
85 84 fveq2d ( 𝑘 ∈ { 𝐴 } → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝑘 ) = ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) )
86 85 adantl ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝑘 ) = ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) )
87 fvexd ( 𝜑 → ( 𝐹𝑗 ) ∈ V )
88 fvsng ( ( 𝐴𝑉 ∧ ( 𝐹𝑗 ) ∈ V ) → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) = ( 𝐹𝑗 ) )
89 1 87 88 syl2anc ( 𝜑 → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) = ( 𝐹𝑗 ) )
90 89 ad2antrr ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) = ( 𝐹𝑗 ) )
91 83 86 90 3eqtrd ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( 𝐼𝑗 ) ‘ 𝑘 ) = ( 𝐹𝑗 ) )
92 91 fveq2d ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( [,) ‘ ( ( 𝐼𝑗 ) ‘ 𝑘 ) ) = ( [,) ‘ ( 𝐹𝑗 ) ) )
93 eqidd ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( [,) ‘ ( 𝐹𝑗 ) ) = ( [,) ‘ ( 𝐹𝑗 ) ) )
94 81 92 93 3eqtrd ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) = ( [,) ‘ ( 𝐹𝑗 ) ) )
95 94 ixpeq2dva ( ( 𝜑𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ { 𝐴 } ( [,) ‘ ( 𝐹𝑗 ) ) )
96 fvex ( [,) ‘ ( 𝐹𝑗 ) ) ∈ V
97 20 96 ixpconst X 𝑘 ∈ { 𝐴 } ( [,) ‘ ( 𝐹𝑗 ) ) = ( ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } )
98 97 a1i ( ( 𝜑𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( [,) ‘ ( 𝐹𝑗 ) ) = ( ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } ) )
99 95 98 eqtrd ( ( 𝜑𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } ) )
100 99 iuneq2dv ( 𝜑 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) = 𝑗 ∈ ℕ ( ( [,) ‘ ( 𝐹𝑗 ) ) ↑m { 𝐴 } ) )
101 50 62 100 3eqtr4d ( 𝜑 → ( 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) = 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) )
102 46 101 sseqtrd ( 𝜑 → ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) )
103 nfcv 𝑗 𝐹
104 ressxr ℝ ⊆ ℝ*
105 xpss2 ( ℝ ⊆ ℝ* → ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* ) )
106 104 105 ax-mp ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* )
107 106 a1i ( 𝜑 → ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* ) )
108 10 107 fssd ( 𝜑𝐹 : ℕ ⟶ ( ℝ × ℝ* ) )
109 103 108 volicofmpt ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) ) ) )
110 68 coeq2d ( 𝑗 ∈ ℕ → ( [,) ∘ ( 𝐼𝑗 ) ) = ( [,) ∘ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) )
111 110 fveq1d ( 𝑗 ∈ ℕ → ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) = ( ( [,) ∘ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) ‘ 𝐴 ) )
112 111 adantl ( ( 𝜑𝑗 ∈ ℕ ) → ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) = ( ( [,) ∘ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) ‘ 𝐴 ) )
113 snidg ( 𝐴𝑉𝐴 ∈ { 𝐴 } )
114 1 113 syl ( 𝜑𝐴 ∈ { 𝐴 } )
115 dmsnopg ( ( 𝐹𝑗 ) ∈ V → dom { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } = { 𝐴 } )
116 87 115 syl ( 𝜑 → dom { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } = { 𝐴 } )
117 114 116 eleqtrrd ( 𝜑𝐴 ∈ dom { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
118 117 adantr ( ( 𝜑𝑗 ∈ ℕ ) → 𝐴 ∈ dom { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } )
119 fvco ( ( Fun { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ∧ 𝐴 ∈ dom { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) → ( ( [,) ∘ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) ‘ 𝐴 ) = ( [,) ‘ ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) ) )
120 63 118 119 syl2anc ( ( 𝜑𝑗 ∈ ℕ ) → ( ( [,) ∘ { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ) ‘ 𝐴 ) = ( [,) ‘ ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) ) )
121 fvexd ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ∈ V )
122 8 121 88 syl2anc ( ( 𝜑𝑗 ∈ ℕ ) → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) = ( 𝐹𝑗 ) )
123 1st2nd2 ( ( 𝐹𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐹𝑗 ) = ⟨ ( 1st ‘ ( 𝐹𝑗 ) ) , ( 2nd ‘ ( 𝐹𝑗 ) ) ⟩ )
124 11 123 syl ( ( 𝜑𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) = ⟨ ( 1st ‘ ( 𝐹𝑗 ) ) , ( 2nd ‘ ( 𝐹𝑗 ) ) ⟩ )
125 122 124 eqtrd ( ( 𝜑𝑗 ∈ ℕ ) → ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) = ⟨ ( 1st ‘ ( 𝐹𝑗 ) ) , ( 2nd ‘ ( 𝐹𝑗 ) ) ⟩ )
126 125 fveq2d ( ( 𝜑𝑗 ∈ ℕ ) → ( [,) ‘ ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) ) = ( [,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑗 ) ) , ( 2nd ‘ ( 𝐹𝑗 ) ) ⟩ ) )
127 df-ov ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) = ( [,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑗 ) ) , ( 2nd ‘ ( 𝐹𝑗 ) ) ⟩ )
128 127 eqcomi ( [,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑗 ) ) , ( 2nd ‘ ( 𝐹𝑗 ) ) ⟩ ) = ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) )
129 128 a1i ( ( 𝜑𝑗 ∈ ℕ ) → ( [,) ‘ ⟨ ( 1st ‘ ( 𝐹𝑗 ) ) , ( 2nd ‘ ( 𝐹𝑗 ) ) ⟩ ) = ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) )
130 126 129 eqtrd ( ( 𝜑𝑗 ∈ ℕ ) → ( [,) ‘ ( { ⟨ 𝐴 , ( 𝐹𝑗 ) ⟩ } ‘ 𝐴 ) ) = ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) )
131 112 120 130 3eqtrd ( ( 𝜑𝑗 ∈ ℕ ) → ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) = ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) )
132 131 fveq2d ( ( 𝜑𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) ) )
133 xp1st ( ( 𝐹𝑗 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹𝑗 ) ) ∈ ℝ )
134 11 133 syl ( ( 𝜑𝑗 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑗 ) ) ∈ ℝ )
135 xp2nd ( ( 𝐹𝑗 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹𝑗 ) ) ∈ ℝ )
136 11 135 syl ( ( 𝜑𝑗 ∈ ℕ ) → ( 2nd ‘ ( 𝐹𝑗 ) ) ∈ ℝ )
137 volicore ( ( ( 1st ‘ ( 𝐹𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑗 ) ) ∈ ℝ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) ) ∈ ℝ )
138 134 136 137 syl2anc ( ( 𝜑𝑗 ∈ ℕ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) ) ∈ ℝ )
139 132 138 eqeltrd ( ( 𝜑𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) ) ∈ ℝ )
140 139 recnd ( ( 𝜑𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) ) ∈ ℂ )
141 2fveq3 ( 𝑘 = 𝐴 → ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) ) )
142 141 prodsn ( ( 𝐴𝑉 ∧ ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) ) )
143 8 140 142 syl2anc ( ( 𝜑𝑗 ∈ ℕ ) → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝐴 ) ) )
144 143 132 eqtr2d ( ( 𝜑𝑗 ∈ ℕ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) ) = ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) )
145 144 mpteq2dva ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹𝑗 ) ) [,) ( 2nd ‘ ( 𝐹𝑗 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) )
146 109 145 eqtrd ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) )
147 146 fveq2d ( 𝜑 → ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) ) )
148 6 147 eqtrd ( 𝜑𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) ) )
149 102 148 jca ( 𝜑 → ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) ) ) )
150 fveq1 ( 𝑖 = 𝐼 → ( 𝑖𝑗 ) = ( 𝐼𝑗 ) )
151 150 coeq2d ( 𝑖 = 𝐼 → ( [,) ∘ ( 𝑖𝑗 ) ) = ( [,) ∘ ( 𝐼𝑗 ) ) )
152 151 fveq1d ( 𝑖 = 𝐼 → ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) )
153 152 ixpeq2dv ( 𝑖 = 𝐼X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) )
154 153 iuneq2d ( 𝑖 = 𝐼 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) = 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) )
155 154 sseq2d ( 𝑖 = 𝐼 → ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ↔ ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) )
156 simpl ( ( 𝑖 = 𝐼𝑘 ∈ { 𝐴 } ) → 𝑖 = 𝐼 )
157 156 fveq1d ( ( 𝑖 = 𝐼𝑘 ∈ { 𝐴 } ) → ( 𝑖𝑗 ) = ( 𝐼𝑗 ) )
158 157 coeq2d ( ( 𝑖 = 𝐼𝑘 ∈ { 𝐴 } ) → ( [,) ∘ ( 𝑖𝑗 ) ) = ( [,) ∘ ( 𝐼𝑗 ) ) )
159 158 fveq1d ( ( 𝑖 = 𝐼𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) )
160 159 fveq2d ( ( 𝑖 = 𝐼𝑘 ∈ { 𝐴 } ) → ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) )
161 160 prodeq2dv ( 𝑖 = 𝐼 → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) )
162 161 mpteq2dv ( 𝑖 = 𝐼 → ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) )
163 162 fveq2d ( 𝑖 = 𝐼 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) ) )
164 163 eqeq2d ( 𝑖 = 𝐼 → ( 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) ) ) )
165 155 164 anbi12d ( 𝑖 = 𝐼 → ( ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) )
166 165 rspcev ( ( 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) )
167 29 149 166 syl2anc ( 𝜑 → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) )