Step |
Hyp |
Ref |
Expression |
1 |
|
ovnovollem1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
ovnovollem1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) |
3 |
|
ovnovollem1.i |
⊢ 𝐼 = ( 𝑗 ∈ ℕ ↦ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
4 |
|
ovnovollem1.s |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( [,) ∘ 𝐹 ) ) |
5 |
|
ovnovollem1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
ovnovollem1.z |
⊢ ( 𝜑 → 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) ) |
7 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } = { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ 𝑉 ) |
9 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
11 |
10
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
12 |
|
fsng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝑗 ) } ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } = { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) ) |
13 |
8 11 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝑗 ) } ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } = { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) ) |
14 |
7 13
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝑗 ) } ) |
15 |
11
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { ( 𝐹 ‘ 𝑗 ) } ⊆ ( ℝ × ℝ ) ) |
16 |
14 15
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } : { 𝐴 } ⟶ ( ℝ × ℝ ) ) |
17 |
|
reex |
⊢ ℝ ∈ V |
18 |
17 17
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ℝ × ℝ ) ∈ V ) |
20 |
|
snex |
⊢ { 𝐴 } ∈ V |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { 𝐴 } ∈ V ) |
22 |
19 21
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ∈ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } : { 𝐴 } ⟶ ( ℝ × ℝ ) ) ) |
23 |
16 22
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ∈ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ) |
24 |
23 3
|
fmptd |
⊢ ( 𝜑 → 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ) |
25 |
|
ovexd |
⊢ ( 𝜑 → ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ∈ V ) |
26 |
|
nnex |
⊢ ℕ ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
28 |
25 27
|
elmapd |
⊢ ( 𝜑 → ( 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ↔ 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ) ) |
29 |
24 28
|
mpbird |
⊢ ( 𝜑 → 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ) |
30 |
|
icof |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
31 |
30
|
a1i |
⊢ ( 𝜑 → [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* ) |
32 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) |
34 |
31 33 10
|
fcoss |
⊢ ( 𝜑 → ( [,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ* ) |
35 |
34
|
ffnd |
⊢ ( 𝜑 → ( [,) ∘ 𝐹 ) Fn ℕ ) |
36 |
|
fniunfv |
⊢ ( ( [,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ∪ ran ( [,) ∘ 𝐹 ) ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ∪ ran ( [,) ∘ 𝐹 ) ) |
38 |
37
|
eqcomd |
⊢ ( 𝜑 → ∪ ran ( [,) ∘ 𝐹 ) = ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ) |
39 |
4 38
|
sseqtrd |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ) |
40 |
|
fvex |
⊢ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V |
41 |
26 40
|
iunex |
⊢ ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V |
42 |
41
|
a1i |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V ) |
43 |
20
|
a1i |
⊢ ( 𝜑 → { 𝐴 } ∈ V ) |
44 |
1
|
snn0d |
⊢ ( 𝜑 → { 𝐴 } ≠ ∅ ) |
45 |
5 42 43 44
|
mapss2 |
⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↔ ( 𝐵 ↑m { 𝐴 } ) ⊆ ( ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) ) |
46 |
39 45
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ↑m { 𝐴 } ) ⊆ ( ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) |
47 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
48 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ V ) |
49 |
47 27 48 1
|
iunmapsn |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) = ( ∪ 𝑗 ∈ ℕ ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) ) |
50 |
49
|
eqcomd |
⊢ ( 𝜑 → ( ∪ 𝑗 ∈ ℕ ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) = ∪ 𝑗 ∈ ℕ ( ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) ) |
51 |
|
elmapfun |
⊢ ( 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → Fun 𝐹 ) |
52 |
2 51
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Fun 𝐹 ) |
54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
55 |
10
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ℕ ) |
56 |
55
|
eqcomd |
⊢ ( 𝜑 → ℕ = dom 𝐹 ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ℕ = dom 𝐹 ) |
58 |
54 57
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ dom 𝐹 ) |
59 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑗 ∈ dom 𝐹 ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
60 |
53 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
61 |
60
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ∪ 𝑗 ∈ ℕ ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
62 |
61
|
oveq1d |
⊢ ( 𝜑 → ( ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) = ( ∪ 𝑗 ∈ ℕ ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) ) |
63 |
14
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Fun { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
64 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
65 |
|
snex |
⊢ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ∈ V |
66 |
65
|
a1i |
⊢ ( 𝑗 ∈ ℕ → { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ∈ V ) |
67 |
3
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ℕ ∧ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ∈ V ) → ( 𝐼 ‘ 𝑗 ) = { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
68 |
64 66 67
|
syl2anc |
⊢ ( 𝑗 ∈ ℕ → ( 𝐼 ‘ 𝑗 ) = { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐼 ‘ 𝑗 ) = { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
70 |
69
|
funeqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( Fun ( 𝐼 ‘ 𝑗 ) ↔ Fun { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) ) |
71 |
63 70
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Fun ( 𝐼 ‘ 𝑗 ) ) |
72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → Fun ( 𝐼 ‘ 𝑗 ) ) |
73 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → 𝑘 ∈ { 𝐴 } ) |
74 |
69
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → dom ( 𝐼 ‘ 𝑗 ) = dom { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
75 |
14
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → dom { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } = { 𝐴 } ) |
76 |
74 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → dom ( 𝐼 ‘ 𝑗 ) = { 𝐴 } ) |
77 |
76
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑘 ∈ dom ( 𝐼 ‘ 𝑗 ) ↔ 𝑘 ∈ { 𝐴 } ) ) |
78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( 𝑘 ∈ dom ( 𝐼 ‘ 𝑗 ) ↔ 𝑘 ∈ { 𝐴 } ) ) |
79 |
73 78
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → 𝑘 ∈ dom ( 𝐼 ‘ 𝑗 ) ) |
80 |
|
fvco |
⊢ ( ( Fun ( 𝐼 ‘ 𝑗 ) ∧ 𝑘 ∈ dom ( 𝐼 ‘ 𝑗 ) ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
81 |
72 79 80
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑘 ) ) ) |
82 |
68
|
fveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑘 ) = ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝑘 ) ) |
83 |
82
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑘 ) = ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝑘 ) ) |
84 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝐴 } → 𝑘 = 𝐴 ) |
85 |
84
|
fveq2d |
⊢ ( 𝑘 ∈ { 𝐴 } → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝑘 ) = ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) ) |
86 |
85
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝑘 ) = ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) ) |
87 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑗 ) ∈ V ) |
88 |
|
fvsng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑗 ) ∈ V ) → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) = ( 𝐹 ‘ 𝑗 ) ) |
89 |
1 87 88
|
syl2anc |
⊢ ( 𝜑 → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) = ( 𝐹 ‘ 𝑗 ) ) |
90 |
89
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) = ( 𝐹 ‘ 𝑗 ) ) |
91 |
83 86 90
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
92 |
91
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑘 ) ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
93 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
94 |
81 92 93
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
95 |
94
|
ixpeq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ { 𝐴 } ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
96 |
|
fvex |
⊢ ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ V |
97 |
20 96
|
ixpconst |
⊢ X 𝑘 ∈ { 𝐴 } ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) = ( ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) |
98 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) = ( ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) ) |
99 |
95 98
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) ) |
100 |
99
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ ( ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ↑m { 𝐴 } ) ) |
101 |
50 62 100
|
3eqtr4d |
⊢ ( 𝜑 → ( ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
102 |
46 101
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
103 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐹 |
104 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
105 |
|
xpss2 |
⊢ ( ℝ ⊆ ℝ* → ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* ) ) |
106 |
104 105
|
ax-mp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* ) |
107 |
106
|
a1i |
⊢ ( 𝜑 → ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* ) ) |
108 |
10 107
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ × ℝ* ) ) |
109 |
103 108
|
volicofmpt |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) ) |
110 |
68
|
coeq2d |
⊢ ( 𝑗 ∈ ℕ → ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) = ( [,) ∘ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) ) |
111 |
110
|
fveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) = ( ( [,) ∘ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) ‘ 𝐴 ) ) |
112 |
111
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) = ( ( [,) ∘ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) ‘ 𝐴 ) ) |
113 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
114 |
1 113
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
115 |
|
dmsnopg |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ V → dom { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } = { 𝐴 } ) |
116 |
87 115
|
syl |
⊢ ( 𝜑 → dom { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } = { 𝐴 } ) |
117 |
114 116
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ dom { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
118 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ dom { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) |
119 |
|
fvco |
⊢ ( ( Fun { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ∧ 𝐴 ∈ dom { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) → ( ( [,) ∘ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) ‘ 𝐴 ) = ( [,) ‘ ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) ) ) |
120 |
63 118 119
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ) ‘ 𝐴 ) = ( [,) ‘ ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) ) ) |
121 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ V ) |
122 |
8 121 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) = ( 𝐹 ‘ 𝑗 ) ) |
123 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) |
124 |
11 123
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) |
125 |
122 124
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) |
126 |
125
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) ) = ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) ) |
127 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) = ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) |
128 |
127
|
eqcomi |
⊢ ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
129 |
128
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
130 |
126 129
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ ( { 〈 𝐴 , ( 𝐹 ‘ 𝑗 ) 〉 } ‘ 𝐴 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
131 |
112 120 130
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
132 |
131
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
133 |
|
xp1st |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
134 |
11 133
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
135 |
|
xp2nd |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
136 |
11 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
137 |
|
volicore |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
138 |
134 136 137
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
139 |
132 138
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ∈ ℝ ) |
140 |
139
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ∈ ℂ ) |
141 |
|
2fveq3 |
⊢ ( 𝑘 = 𝐴 → ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ) |
142 |
141
|
prodsn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ) |
143 |
8 140 142
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ) |
144 |
143 132
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) = ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
145 |
144
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
146 |
109 145
|
eqtrd |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
147 |
146
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
148 |
6 147
|
eqtrd |
⊢ ( 𝜑 → 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
149 |
102 148
|
jca |
⊢ ( 𝜑 → ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
150 |
|
fveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑗 ) ) |
151 |
150
|
coeq2d |
⊢ ( 𝑖 = 𝐼 → ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ) |
152 |
151
|
fveq1d |
⊢ ( 𝑖 = 𝐼 → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
153 |
152
|
ixpeq2dv |
⊢ ( 𝑖 = 𝐼 → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
154 |
153
|
iuneq2d |
⊢ ( 𝑖 = 𝐼 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
155 |
154
|
sseq2d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
156 |
|
simpl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑘 ∈ { 𝐴 } ) → 𝑖 = 𝐼 ) |
157 |
156
|
fveq1d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑘 ∈ { 𝐴 } ) → ( 𝑖 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑗 ) ) |
158 |
157
|
coeq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑘 ∈ { 𝐴 } ) → ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ) |
159 |
158
|
fveq1d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
160 |
159
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑘 ∈ { 𝐴 } ) → ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
161 |
160
|
prodeq2dv |
⊢ ( 𝑖 = 𝐼 → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
162 |
161
|
mpteq2dv |
⊢ ( 𝑖 = 𝐼 → ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
163 |
162
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
164 |
163
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
165 |
155 164
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
166 |
165
|
rspcev |
⊢ ( ( 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
167 |
29 149 166
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |