Step |
Hyp |
Ref |
Expression |
1 |
|
ovnovollem1.a |
|- ( ph -> A e. V ) |
2 |
|
ovnovollem1.f |
|- ( ph -> F e. ( ( RR X. RR ) ^m NN ) ) |
3 |
|
ovnovollem1.i |
|- I = ( j e. NN |-> { <. A , ( F ` j ) >. } ) |
4 |
|
ovnovollem1.s |
|- ( ph -> B C_ U. ran ( [,) o. F ) ) |
5 |
|
ovnovollem1.b |
|- ( ph -> B e. W ) |
6 |
|
ovnovollem1.z |
|- ( ph -> Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) |
7 |
|
eqidd |
|- ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) |
8 |
1
|
adantr |
|- ( ( ph /\ j e. NN ) -> A e. V ) |
9 |
|
elmapi |
|- ( F e. ( ( RR X. RR ) ^m NN ) -> F : NN --> ( RR X. RR ) ) |
10 |
2 9
|
syl |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
11 |
10
|
ffvelrnda |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) e. ( RR X. RR ) ) |
12 |
|
fsng |
|- ( ( A e. V /\ ( F ` j ) e. ( RR X. RR ) ) -> ( { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } <-> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) ) |
13 |
8 11 12
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } <-> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) ) |
14 |
7 13
|
mpbird |
|- ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } ) |
15 |
11
|
snssd |
|- ( ( ph /\ j e. NN ) -> { ( F ` j ) } C_ ( RR X. RR ) ) |
16 |
14 15
|
fssd |
|- ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } : { A } --> ( RR X. RR ) ) |
17 |
|
reex |
|- RR e. _V |
18 |
17 17
|
xpex |
|- ( RR X. RR ) e. _V |
19 |
18
|
a1i |
|- ( ( ph /\ j e. NN ) -> ( RR X. RR ) e. _V ) |
20 |
|
snex |
|- { A } e. _V |
21 |
20
|
a1i |
|- ( ( ph /\ j e. NN ) -> { A } e. _V ) |
22 |
19 21
|
elmapd |
|- ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } e. ( ( RR X. RR ) ^m { A } ) <-> { <. A , ( F ` j ) >. } : { A } --> ( RR X. RR ) ) ) |
23 |
16 22
|
mpbird |
|- ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } e. ( ( RR X. RR ) ^m { A } ) ) |
24 |
23 3
|
fmptd |
|- ( ph -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) |
25 |
|
ovexd |
|- ( ph -> ( ( RR X. RR ) ^m { A } ) e. _V ) |
26 |
|
nnex |
|- NN e. _V |
27 |
26
|
a1i |
|- ( ph -> NN e. _V ) |
28 |
25 27
|
elmapd |
|- ( ph -> ( I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) <-> I : NN --> ( ( RR X. RR ) ^m { A } ) ) ) |
29 |
24 28
|
mpbird |
|- ( ph -> I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ) |
30 |
|
icof |
|- [,) : ( RR* X. RR* ) --> ~P RR* |
31 |
30
|
a1i |
|- ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) |
32 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
33 |
32
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) |
34 |
31 33 10
|
fcoss |
|- ( ph -> ( [,) o. F ) : NN --> ~P RR* ) |
35 |
34
|
ffnd |
|- ( ph -> ( [,) o. F ) Fn NN ) |
36 |
|
fniunfv |
|- ( ( [,) o. F ) Fn NN -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) |
37 |
35 36
|
syl |
|- ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) |
38 |
37
|
eqcomd |
|- ( ph -> U. ran ( [,) o. F ) = U_ j e. NN ( ( [,) o. F ) ` j ) ) |
39 |
4 38
|
sseqtrd |
|- ( ph -> B C_ U_ j e. NN ( ( [,) o. F ) ` j ) ) |
40 |
|
fvex |
|- ( ( [,) o. F ) ` j ) e. _V |
41 |
26 40
|
iunex |
|- U_ j e. NN ( ( [,) o. F ) ` j ) e. _V |
42 |
41
|
a1i |
|- ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) e. _V ) |
43 |
20
|
a1i |
|- ( ph -> { A } e. _V ) |
44 |
1
|
snn0d |
|- ( ph -> { A } =/= (/) ) |
45 |
5 42 43 44
|
mapss2 |
|- ( ph -> ( B C_ U_ j e. NN ( ( [,) o. F ) ` j ) <-> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) ) |
46 |
39 45
|
mpbid |
|- ( ph -> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) |
47 |
|
nfv |
|- F/ j ph |
48 |
|
fvexd |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( F ` j ) ) e. _V ) |
49 |
47 27 48 1
|
iunmapsn |
|- ( ph -> U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) = ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) ) |
50 |
49
|
eqcomd |
|- ( ph -> ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) = U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) ) |
51 |
|
elmapfun |
|- ( F e. ( ( RR X. RR ) ^m NN ) -> Fun F ) |
52 |
2 51
|
syl |
|- ( ph -> Fun F ) |
53 |
52
|
adantr |
|- ( ( ph /\ j e. NN ) -> Fun F ) |
54 |
|
simpr |
|- ( ( ph /\ j e. NN ) -> j e. NN ) |
55 |
10
|
fdmd |
|- ( ph -> dom F = NN ) |
56 |
55
|
eqcomd |
|- ( ph -> NN = dom F ) |
57 |
56
|
adantr |
|- ( ( ph /\ j e. NN ) -> NN = dom F ) |
58 |
54 57
|
eleqtrd |
|- ( ( ph /\ j e. NN ) -> j e. dom F ) |
59 |
|
fvco |
|- ( ( Fun F /\ j e. dom F ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) |
60 |
53 58 59
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) |
61 |
60
|
iuneq2dv |
|- ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) = U_ j e. NN ( [,) ` ( F ` j ) ) ) |
62 |
61
|
oveq1d |
|- ( ph -> ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) = ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) ) |
63 |
14
|
ffund |
|- ( ( ph /\ j e. NN ) -> Fun { <. A , ( F ` j ) >. } ) |
64 |
|
id |
|- ( j e. NN -> j e. NN ) |
65 |
|
snex |
|- { <. A , ( F ` j ) >. } e. _V |
66 |
65
|
a1i |
|- ( j e. NN -> { <. A , ( F ` j ) >. } e. _V ) |
67 |
3
|
fvmpt2 |
|- ( ( j e. NN /\ { <. A , ( F ` j ) >. } e. _V ) -> ( I ` j ) = { <. A , ( F ` j ) >. } ) |
68 |
64 66 67
|
syl2anc |
|- ( j e. NN -> ( I ` j ) = { <. A , ( F ` j ) >. } ) |
69 |
68
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) = { <. A , ( F ` j ) >. } ) |
70 |
69
|
funeqd |
|- ( ( ph /\ j e. NN ) -> ( Fun ( I ` j ) <-> Fun { <. A , ( F ` j ) >. } ) ) |
71 |
63 70
|
mpbird |
|- ( ( ph /\ j e. NN ) -> Fun ( I ` j ) ) |
72 |
71
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> Fun ( I ` j ) ) |
73 |
|
simpr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> k e. { A } ) |
74 |
69
|
dmeqd |
|- ( ( ph /\ j e. NN ) -> dom ( I ` j ) = dom { <. A , ( F ` j ) >. } ) |
75 |
14
|
fdmd |
|- ( ( ph /\ j e. NN ) -> dom { <. A , ( F ` j ) >. } = { A } ) |
76 |
74 75
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> dom ( I ` j ) = { A } ) |
77 |
76
|
eleq2d |
|- ( ( ph /\ j e. NN ) -> ( k e. dom ( I ` j ) <-> k e. { A } ) ) |
78 |
77
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( k e. dom ( I ` j ) <-> k e. { A } ) ) |
79 |
73 78
|
mpbird |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> k e. dom ( I ` j ) ) |
80 |
|
fvco |
|- ( ( Fun ( I ` j ) /\ k e. dom ( I ` j ) ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( ( I ` j ) ` k ) ) ) |
81 |
72 79 80
|
syl2anc |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( ( I ` j ) ` k ) ) ) |
82 |
68
|
fveq1d |
|- ( j e. NN -> ( ( I ` j ) ` k ) = ( { <. A , ( F ` j ) >. } ` k ) ) |
83 |
82
|
ad2antlr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( I ` j ) ` k ) = ( { <. A , ( F ` j ) >. } ` k ) ) |
84 |
|
elsni |
|- ( k e. { A } -> k = A ) |
85 |
84
|
fveq2d |
|- ( k e. { A } -> ( { <. A , ( F ` j ) >. } ` k ) = ( { <. A , ( F ` j ) >. } ` A ) ) |
86 |
85
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( { <. A , ( F ` j ) >. } ` k ) = ( { <. A , ( F ` j ) >. } ` A ) ) |
87 |
|
fvexd |
|- ( ph -> ( F ` j ) e. _V ) |
88 |
|
fvsng |
|- ( ( A e. V /\ ( F ` j ) e. _V ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) |
89 |
1 87 88
|
syl2anc |
|- ( ph -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) |
90 |
89
|
ad2antrr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) |
91 |
83 86 90
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( I ` j ) ` k ) = ( F ` j ) ) |
92 |
91
|
fveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( [,) ` ( ( I ` j ) ` k ) ) = ( [,) ` ( F ` j ) ) ) |
93 |
|
eqidd |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( [,) ` ( F ` j ) ) = ( [,) ` ( F ` j ) ) ) |
94 |
81 92 93
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( F ` j ) ) ) |
95 |
94
|
ixpeq2dva |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = X_ k e. { A } ( [,) ` ( F ` j ) ) ) |
96 |
|
fvex |
|- ( [,) ` ( F ` j ) ) e. _V |
97 |
20 96
|
ixpconst |
|- X_ k e. { A } ( [,) ` ( F ` j ) ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) |
98 |
97
|
a1i |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( [,) ` ( F ` j ) ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) ) |
99 |
95 98
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) ) |
100 |
99
|
iuneq2dv |
|- ( ph -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) ) |
101 |
50 62 100
|
3eqtr4d |
|- ( ph -> ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) = U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
102 |
46 101
|
sseqtrd |
|- ( ph -> ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
103 |
|
nfcv |
|- F/_ j F |
104 |
|
ressxr |
|- RR C_ RR* |
105 |
|
xpss2 |
|- ( RR C_ RR* -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
106 |
104 105
|
ax-mp |
|- ( RR X. RR ) C_ ( RR X. RR* ) |
107 |
106
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
108 |
10 107
|
fssd |
|- ( ph -> F : NN --> ( RR X. RR* ) ) |
109 |
103 108
|
volicofmpt |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) ) |
110 |
68
|
coeq2d |
|- ( j e. NN -> ( [,) o. ( I ` j ) ) = ( [,) o. { <. A , ( F ` j ) >. } ) ) |
111 |
110
|
fveq1d |
|- ( j e. NN -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) ) |
112 |
111
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) ) |
113 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
114 |
1 113
|
syl |
|- ( ph -> A e. { A } ) |
115 |
|
dmsnopg |
|- ( ( F ` j ) e. _V -> dom { <. A , ( F ` j ) >. } = { A } ) |
116 |
87 115
|
syl |
|- ( ph -> dom { <. A , ( F ` j ) >. } = { A } ) |
117 |
114 116
|
eleqtrrd |
|- ( ph -> A e. dom { <. A , ( F ` j ) >. } ) |
118 |
117
|
adantr |
|- ( ( ph /\ j e. NN ) -> A e. dom { <. A , ( F ` j ) >. } ) |
119 |
|
fvco |
|- ( ( Fun { <. A , ( F ` j ) >. } /\ A e. dom { <. A , ( F ` j ) >. } ) -> ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) = ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) ) |
120 |
63 118 119
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) = ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) ) |
121 |
|
fvexd |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) e. _V ) |
122 |
8 121 88
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) |
123 |
|
1st2nd2 |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
124 |
11 123
|
syl |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
125 |
122 124
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } ` A ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
126 |
125
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) ) |
127 |
|
df-ov |
|- ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
128 |
127
|
eqcomi |
|- ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) |
129 |
128
|
a1i |
|- ( ( ph /\ j e. NN ) -> ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
130 |
126 129
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
131 |
112 120 130
|
3eqtrd |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
132 |
131
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) = ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) |
133 |
|
xp1st |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( 1st ` ( F ` j ) ) e. RR ) |
134 |
11 133
|
syl |
|- ( ( ph /\ j e. NN ) -> ( 1st ` ( F ` j ) ) e. RR ) |
135 |
|
xp2nd |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( 2nd ` ( F ` j ) ) e. RR ) |
136 |
11 135
|
syl |
|- ( ( ph /\ j e. NN ) -> ( 2nd ` ( F ` j ) ) e. RR ) |
137 |
|
volicore |
|- ( ( ( 1st ` ( F ` j ) ) e. RR /\ ( 2nd ` ( F ` j ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) |
138 |
134 136 137
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) |
139 |
132 138
|
eqeltrd |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. RR ) |
140 |
139
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) |
141 |
|
2fveq3 |
|- ( k = A -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
142 |
141
|
prodsn |
|- ( ( A e. V /\ ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
143 |
8 140 142
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
144 |
143 132
|
eqtr2d |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) = prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
145 |
144
|
mpteq2dva |
|- ( ph -> ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
146 |
109 145
|
eqtrd |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
147 |
146
|
fveq2d |
|- ( ph -> ( sum^ ` ( ( vol o. [,) ) o. F ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
148 |
6 147
|
eqtrd |
|- ( ph -> Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
149 |
102 148
|
jca |
|- ( ph -> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) |
150 |
|
fveq1 |
|- ( i = I -> ( i ` j ) = ( I ` j ) ) |
151 |
150
|
coeq2d |
|- ( i = I -> ( [,) o. ( i ` j ) ) = ( [,) o. ( I ` j ) ) ) |
152 |
151
|
fveq1d |
|- ( i = I -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
153 |
152
|
ixpeq2dv |
|- ( i = I -> X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) = X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
154 |
153
|
iuneq2d |
|- ( i = I -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) = U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
155 |
154
|
sseq2d |
|- ( i = I -> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) <-> ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
156 |
|
simpl |
|- ( ( i = I /\ k e. { A } ) -> i = I ) |
157 |
156
|
fveq1d |
|- ( ( i = I /\ k e. { A } ) -> ( i ` j ) = ( I ` j ) ) |
158 |
157
|
coeq2d |
|- ( ( i = I /\ k e. { A } ) -> ( [,) o. ( i ` j ) ) = ( [,) o. ( I ` j ) ) ) |
159 |
158
|
fveq1d |
|- ( ( i = I /\ k e. { A } ) -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
160 |
159
|
fveq2d |
|- ( ( i = I /\ k e. { A } ) -> ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
161 |
160
|
prodeq2dv |
|- ( i = I -> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
162 |
161
|
mpteq2dv |
|- ( i = I -> ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
163 |
162
|
fveq2d |
|- ( i = I -> ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
164 |
163
|
eqeq2d |
|- ( i = I -> ( Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) <-> Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) |
165 |
155 164
|
anbi12d |
|- ( i = I -> ( ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) <-> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) ) |
166 |
165
|
rspcev |
|- ( ( I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) /\ ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) -> E. i e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
167 |
29 149 166
|
syl2anc |
|- ( ph -> E. i e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |