| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnovollem1.a |
|- ( ph -> A e. V ) |
| 2 |
|
ovnovollem1.f |
|- ( ph -> F e. ( ( RR X. RR ) ^m NN ) ) |
| 3 |
|
ovnovollem1.i |
|- I = ( j e. NN |-> { <. A , ( F ` j ) >. } ) |
| 4 |
|
ovnovollem1.s |
|- ( ph -> B C_ U. ran ( [,) o. F ) ) |
| 5 |
|
ovnovollem1.b |
|- ( ph -> B e. W ) |
| 6 |
|
ovnovollem1.z |
|- ( ph -> Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) |
| 7 |
|
eqidd |
|- ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) |
| 8 |
1
|
adantr |
|- ( ( ph /\ j e. NN ) -> A e. V ) |
| 9 |
|
elmapi |
|- ( F e. ( ( RR X. RR ) ^m NN ) -> F : NN --> ( RR X. RR ) ) |
| 10 |
2 9
|
syl |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
| 11 |
10
|
ffvelcdmda |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) e. ( RR X. RR ) ) |
| 12 |
|
fsng |
|- ( ( A e. V /\ ( F ` j ) e. ( RR X. RR ) ) -> ( { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } <-> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) ) |
| 13 |
8 11 12
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } <-> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) ) |
| 14 |
7 13
|
mpbird |
|- ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } ) |
| 15 |
11
|
snssd |
|- ( ( ph /\ j e. NN ) -> { ( F ` j ) } C_ ( RR X. RR ) ) |
| 16 |
14 15
|
fssd |
|- ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } : { A } --> ( RR X. RR ) ) |
| 17 |
|
reex |
|- RR e. _V |
| 18 |
17 17
|
xpex |
|- ( RR X. RR ) e. _V |
| 19 |
18
|
a1i |
|- ( ( ph /\ j e. NN ) -> ( RR X. RR ) e. _V ) |
| 20 |
|
snex |
|- { A } e. _V |
| 21 |
20
|
a1i |
|- ( ( ph /\ j e. NN ) -> { A } e. _V ) |
| 22 |
19 21
|
elmapd |
|- ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } e. ( ( RR X. RR ) ^m { A } ) <-> { <. A , ( F ` j ) >. } : { A } --> ( RR X. RR ) ) ) |
| 23 |
16 22
|
mpbird |
|- ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } e. ( ( RR X. RR ) ^m { A } ) ) |
| 24 |
23 3
|
fmptd |
|- ( ph -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) |
| 25 |
|
ovexd |
|- ( ph -> ( ( RR X. RR ) ^m { A } ) e. _V ) |
| 26 |
|
nnex |
|- NN e. _V |
| 27 |
26
|
a1i |
|- ( ph -> NN e. _V ) |
| 28 |
25 27
|
elmapd |
|- ( ph -> ( I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) <-> I : NN --> ( ( RR X. RR ) ^m { A } ) ) ) |
| 29 |
24 28
|
mpbird |
|- ( ph -> I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ) |
| 30 |
|
icof |
|- [,) : ( RR* X. RR* ) --> ~P RR* |
| 31 |
30
|
a1i |
|- ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) |
| 32 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 33 |
32
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) |
| 34 |
31 33 10
|
fcoss |
|- ( ph -> ( [,) o. F ) : NN --> ~P RR* ) |
| 35 |
34
|
ffnd |
|- ( ph -> ( [,) o. F ) Fn NN ) |
| 36 |
|
fniunfv |
|- ( ( [,) o. F ) Fn NN -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) |
| 37 |
35 36
|
syl |
|- ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) |
| 38 |
37
|
eqcomd |
|- ( ph -> U. ran ( [,) o. F ) = U_ j e. NN ( ( [,) o. F ) ` j ) ) |
| 39 |
4 38
|
sseqtrd |
|- ( ph -> B C_ U_ j e. NN ( ( [,) o. F ) ` j ) ) |
| 40 |
|
fvex |
|- ( ( [,) o. F ) ` j ) e. _V |
| 41 |
26 40
|
iunex |
|- U_ j e. NN ( ( [,) o. F ) ` j ) e. _V |
| 42 |
41
|
a1i |
|- ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) e. _V ) |
| 43 |
20
|
a1i |
|- ( ph -> { A } e. _V ) |
| 44 |
1
|
snn0d |
|- ( ph -> { A } =/= (/) ) |
| 45 |
5 42 43 44
|
mapss2 |
|- ( ph -> ( B C_ U_ j e. NN ( ( [,) o. F ) ` j ) <-> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) ) |
| 46 |
39 45
|
mpbid |
|- ( ph -> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) |
| 47 |
|
nfv |
|- F/ j ph |
| 48 |
|
fvexd |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( F ` j ) ) e. _V ) |
| 49 |
47 27 48 1
|
iunmapsn |
|- ( ph -> U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) = ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) ) |
| 50 |
49
|
eqcomd |
|- ( ph -> ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) = U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) ) |
| 51 |
|
elmapfun |
|- ( F e. ( ( RR X. RR ) ^m NN ) -> Fun F ) |
| 52 |
2 51
|
syl |
|- ( ph -> Fun F ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ j e. NN ) -> Fun F ) |
| 54 |
|
simpr |
|- ( ( ph /\ j e. NN ) -> j e. NN ) |
| 55 |
10
|
fdmd |
|- ( ph -> dom F = NN ) |
| 56 |
55
|
eqcomd |
|- ( ph -> NN = dom F ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ j e. NN ) -> NN = dom F ) |
| 58 |
54 57
|
eleqtrd |
|- ( ( ph /\ j e. NN ) -> j e. dom F ) |
| 59 |
|
fvco |
|- ( ( Fun F /\ j e. dom F ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) |
| 60 |
53 58 59
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) |
| 61 |
60
|
iuneq2dv |
|- ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) = U_ j e. NN ( [,) ` ( F ` j ) ) ) |
| 62 |
61
|
oveq1d |
|- ( ph -> ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) = ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) ) |
| 63 |
14
|
ffund |
|- ( ( ph /\ j e. NN ) -> Fun { <. A , ( F ` j ) >. } ) |
| 64 |
|
id |
|- ( j e. NN -> j e. NN ) |
| 65 |
|
snex |
|- { <. A , ( F ` j ) >. } e. _V |
| 66 |
65
|
a1i |
|- ( j e. NN -> { <. A , ( F ` j ) >. } e. _V ) |
| 67 |
3
|
fvmpt2 |
|- ( ( j e. NN /\ { <. A , ( F ` j ) >. } e. _V ) -> ( I ` j ) = { <. A , ( F ` j ) >. } ) |
| 68 |
64 66 67
|
syl2anc |
|- ( j e. NN -> ( I ` j ) = { <. A , ( F ` j ) >. } ) |
| 69 |
68
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) = { <. A , ( F ` j ) >. } ) |
| 70 |
69
|
funeqd |
|- ( ( ph /\ j e. NN ) -> ( Fun ( I ` j ) <-> Fun { <. A , ( F ` j ) >. } ) ) |
| 71 |
63 70
|
mpbird |
|- ( ( ph /\ j e. NN ) -> Fun ( I ` j ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> Fun ( I ` j ) ) |
| 73 |
|
simpr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> k e. { A } ) |
| 74 |
69
|
dmeqd |
|- ( ( ph /\ j e. NN ) -> dom ( I ` j ) = dom { <. A , ( F ` j ) >. } ) |
| 75 |
14
|
fdmd |
|- ( ( ph /\ j e. NN ) -> dom { <. A , ( F ` j ) >. } = { A } ) |
| 76 |
74 75
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> dom ( I ` j ) = { A } ) |
| 77 |
76
|
eleq2d |
|- ( ( ph /\ j e. NN ) -> ( k e. dom ( I ` j ) <-> k e. { A } ) ) |
| 78 |
77
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( k e. dom ( I ` j ) <-> k e. { A } ) ) |
| 79 |
73 78
|
mpbird |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> k e. dom ( I ` j ) ) |
| 80 |
|
fvco |
|- ( ( Fun ( I ` j ) /\ k e. dom ( I ` j ) ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( ( I ` j ) ` k ) ) ) |
| 81 |
72 79 80
|
syl2anc |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( ( I ` j ) ` k ) ) ) |
| 82 |
68
|
fveq1d |
|- ( j e. NN -> ( ( I ` j ) ` k ) = ( { <. A , ( F ` j ) >. } ` k ) ) |
| 83 |
82
|
ad2antlr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( I ` j ) ` k ) = ( { <. A , ( F ` j ) >. } ` k ) ) |
| 84 |
|
elsni |
|- ( k e. { A } -> k = A ) |
| 85 |
84
|
fveq2d |
|- ( k e. { A } -> ( { <. A , ( F ` j ) >. } ` k ) = ( { <. A , ( F ` j ) >. } ` A ) ) |
| 86 |
85
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( { <. A , ( F ` j ) >. } ` k ) = ( { <. A , ( F ` j ) >. } ` A ) ) |
| 87 |
|
fvexd |
|- ( ph -> ( F ` j ) e. _V ) |
| 88 |
|
fvsng |
|- ( ( A e. V /\ ( F ` j ) e. _V ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) |
| 89 |
1 87 88
|
syl2anc |
|- ( ph -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) |
| 90 |
89
|
ad2antrr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) |
| 91 |
83 86 90
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( I ` j ) ` k ) = ( F ` j ) ) |
| 92 |
91
|
fveq2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( [,) ` ( ( I ` j ) ` k ) ) = ( [,) ` ( F ` j ) ) ) |
| 93 |
|
eqidd |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( [,) ` ( F ` j ) ) = ( [,) ` ( F ` j ) ) ) |
| 94 |
81 92 93
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( F ` j ) ) ) |
| 95 |
94
|
ixpeq2dva |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = X_ k e. { A } ( [,) ` ( F ` j ) ) ) |
| 96 |
|
fvex |
|- ( [,) ` ( F ` j ) ) e. _V |
| 97 |
20 96
|
ixpconst |
|- X_ k e. { A } ( [,) ` ( F ` j ) ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) |
| 98 |
97
|
a1i |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( [,) ` ( F ` j ) ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) ) |
| 99 |
95 98
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) ) |
| 100 |
99
|
iuneq2dv |
|- ( ph -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) ) |
| 101 |
50 62 100
|
3eqtr4d |
|- ( ph -> ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) = U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
| 102 |
46 101
|
sseqtrd |
|- ( ph -> ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
| 103 |
|
nfcv |
|- F/_ j F |
| 104 |
|
ressxr |
|- RR C_ RR* |
| 105 |
|
xpss2 |
|- ( RR C_ RR* -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
| 106 |
104 105
|
ax-mp |
|- ( RR X. RR ) C_ ( RR X. RR* ) |
| 107 |
106
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
| 108 |
10 107
|
fssd |
|- ( ph -> F : NN --> ( RR X. RR* ) ) |
| 109 |
103 108
|
volicofmpt |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) ) |
| 110 |
68
|
coeq2d |
|- ( j e. NN -> ( [,) o. ( I ` j ) ) = ( [,) o. { <. A , ( F ` j ) >. } ) ) |
| 111 |
110
|
fveq1d |
|- ( j e. NN -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) ) |
| 112 |
111
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) ) |
| 113 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
| 114 |
1 113
|
syl |
|- ( ph -> A e. { A } ) |
| 115 |
|
dmsnopg |
|- ( ( F ` j ) e. _V -> dom { <. A , ( F ` j ) >. } = { A } ) |
| 116 |
87 115
|
syl |
|- ( ph -> dom { <. A , ( F ` j ) >. } = { A } ) |
| 117 |
114 116
|
eleqtrrd |
|- ( ph -> A e. dom { <. A , ( F ` j ) >. } ) |
| 118 |
117
|
adantr |
|- ( ( ph /\ j e. NN ) -> A e. dom { <. A , ( F ` j ) >. } ) |
| 119 |
|
fvco |
|- ( ( Fun { <. A , ( F ` j ) >. } /\ A e. dom { <. A , ( F ` j ) >. } ) -> ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) = ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) ) |
| 120 |
63 118 119
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) = ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) ) |
| 121 |
|
fvexd |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) e. _V ) |
| 122 |
8 121 88
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) |
| 123 |
|
1st2nd2 |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
| 124 |
11 123
|
syl |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
| 125 |
122 124
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } ` A ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
| 126 |
125
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) ) |
| 127 |
|
df-ov |
|- ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
| 128 |
127
|
eqcomi |
|- ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) |
| 129 |
128
|
a1i |
|- ( ( ph /\ j e. NN ) -> ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
| 130 |
126 129
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
| 131 |
112 120 130
|
3eqtrd |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
| 132 |
131
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) = ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) |
| 133 |
|
xp1st |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( 1st ` ( F ` j ) ) e. RR ) |
| 134 |
11 133
|
syl |
|- ( ( ph /\ j e. NN ) -> ( 1st ` ( F ` j ) ) e. RR ) |
| 135 |
|
xp2nd |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( 2nd ` ( F ` j ) ) e. RR ) |
| 136 |
11 135
|
syl |
|- ( ( ph /\ j e. NN ) -> ( 2nd ` ( F ` j ) ) e. RR ) |
| 137 |
|
volicore |
|- ( ( ( 1st ` ( F ` j ) ) e. RR /\ ( 2nd ` ( F ` j ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) |
| 138 |
134 136 137
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) |
| 139 |
132 138
|
eqeltrd |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. RR ) |
| 140 |
139
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) |
| 141 |
|
2fveq3 |
|- ( k = A -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
| 142 |
141
|
prodsn |
|- ( ( A e. V /\ ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
| 143 |
8 140 142
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
| 144 |
143 132
|
eqtr2d |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) = prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
| 145 |
144
|
mpteq2dva |
|- ( ph -> ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
| 146 |
109 145
|
eqtrd |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
| 147 |
146
|
fveq2d |
|- ( ph -> ( sum^ ` ( ( vol o. [,) ) o. F ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
| 148 |
6 147
|
eqtrd |
|- ( ph -> Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
| 149 |
102 148
|
jca |
|- ( ph -> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) |
| 150 |
|
fveq1 |
|- ( i = I -> ( i ` j ) = ( I ` j ) ) |
| 151 |
150
|
coeq2d |
|- ( i = I -> ( [,) o. ( i ` j ) ) = ( [,) o. ( I ` j ) ) ) |
| 152 |
151
|
fveq1d |
|- ( i = I -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
| 153 |
152
|
ixpeq2dv |
|- ( i = I -> X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) = X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
| 154 |
153
|
iuneq2d |
|- ( i = I -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) = U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
| 155 |
154
|
sseq2d |
|- ( i = I -> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) <-> ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
| 156 |
|
simpl |
|- ( ( i = I /\ k e. { A } ) -> i = I ) |
| 157 |
156
|
fveq1d |
|- ( ( i = I /\ k e. { A } ) -> ( i ` j ) = ( I ` j ) ) |
| 158 |
157
|
coeq2d |
|- ( ( i = I /\ k e. { A } ) -> ( [,) o. ( i ` j ) ) = ( [,) o. ( I ` j ) ) ) |
| 159 |
158
|
fveq1d |
|- ( ( i = I /\ k e. { A } ) -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
| 160 |
159
|
fveq2d |
|- ( ( i = I /\ k e. { A } ) -> ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
| 161 |
160
|
prodeq2dv |
|- ( i = I -> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
| 162 |
161
|
mpteq2dv |
|- ( i = I -> ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
| 163 |
162
|
fveq2d |
|- ( i = I -> ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
| 164 |
163
|
eqeq2d |
|- ( i = I -> ( Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) <-> Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) |
| 165 |
155 164
|
anbi12d |
|- ( i = I -> ( ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) <-> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) ) |
| 166 |
165
|
rspcev |
|- ( ( I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) /\ ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) -> E. i e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |
| 167 |
29 149 166
|
syl2anc |
|- ( ph -> E. i e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |