| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovnovollem1.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | ovnovollem1.f |  |-  ( ph -> F e. ( ( RR X. RR ) ^m NN ) ) | 
						
							| 3 |  | ovnovollem1.i |  |-  I = ( j e. NN |-> { <. A , ( F ` j ) >. } ) | 
						
							| 4 |  | ovnovollem1.s |  |-  ( ph -> B C_ U. ran ( [,) o. F ) ) | 
						
							| 5 |  | ovnovollem1.b |  |-  ( ph -> B e. W ) | 
						
							| 6 |  | ovnovollem1.z |  |-  ( ph -> Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) | 
						
							| 7 |  | eqidd |  |-  ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) | 
						
							| 8 | 1 | adantr |  |-  ( ( ph /\ j e. NN ) -> A e. V ) | 
						
							| 9 |  | elmapi |  |-  ( F e. ( ( RR X. RR ) ^m NN ) -> F : NN --> ( RR X. RR ) ) | 
						
							| 10 | 2 9 | syl |  |-  ( ph -> F : NN --> ( RR X. RR ) ) | 
						
							| 11 | 10 | ffvelcdmda |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) e. ( RR X. RR ) ) | 
						
							| 12 |  | fsng |  |-  ( ( A e. V /\ ( F ` j ) e. ( RR X. RR ) ) -> ( { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } <-> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) ) | 
						
							| 13 | 8 11 12 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } <-> { <. A , ( F ` j ) >. } = { <. A , ( F ` j ) >. } ) ) | 
						
							| 14 | 7 13 | mpbird |  |-  ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } : { A } --> { ( F ` j ) } ) | 
						
							| 15 | 11 | snssd |  |-  ( ( ph /\ j e. NN ) -> { ( F ` j ) } C_ ( RR X. RR ) ) | 
						
							| 16 | 14 15 | fssd |  |-  ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } : { A } --> ( RR X. RR ) ) | 
						
							| 17 |  | reex |  |-  RR e. _V | 
						
							| 18 | 17 17 | xpex |  |-  ( RR X. RR ) e. _V | 
						
							| 19 | 18 | a1i |  |-  ( ( ph /\ j e. NN ) -> ( RR X. RR ) e. _V ) | 
						
							| 20 |  | snex |  |-  { A } e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ( ph /\ j e. NN ) -> { A } e. _V ) | 
						
							| 22 | 19 21 | elmapd |  |-  ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } e. ( ( RR X. RR ) ^m { A } ) <-> { <. A , ( F ` j ) >. } : { A } --> ( RR X. RR ) ) ) | 
						
							| 23 | 16 22 | mpbird |  |-  ( ( ph /\ j e. NN ) -> { <. A , ( F ` j ) >. } e. ( ( RR X. RR ) ^m { A } ) ) | 
						
							| 24 | 23 3 | fmptd |  |-  ( ph -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) | 
						
							| 25 |  | ovexd |  |-  ( ph -> ( ( RR X. RR ) ^m { A } ) e. _V ) | 
						
							| 26 |  | nnex |  |-  NN e. _V | 
						
							| 27 | 26 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 28 | 25 27 | elmapd |  |-  ( ph -> ( I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) <-> I : NN --> ( ( RR X. RR ) ^m { A } ) ) ) | 
						
							| 29 | 24 28 | mpbird |  |-  ( ph -> I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ) | 
						
							| 30 |  | icof |  |-  [,) : ( RR* X. RR* ) --> ~P RR* | 
						
							| 31 | 30 | a1i |  |-  ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) | 
						
							| 32 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 33 | 32 | a1i |  |-  ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) | 
						
							| 34 | 31 33 10 | fcoss |  |-  ( ph -> ( [,) o. F ) : NN --> ~P RR* ) | 
						
							| 35 | 34 | ffnd |  |-  ( ph -> ( [,) o. F ) Fn NN ) | 
						
							| 36 |  | fniunfv |  |-  ( ( [,) o. F ) Fn NN -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ph -> U. ran ( [,) o. F ) = U_ j e. NN ( ( [,) o. F ) ` j ) ) | 
						
							| 39 | 4 38 | sseqtrd |  |-  ( ph -> B C_ U_ j e. NN ( ( [,) o. F ) ` j ) ) | 
						
							| 40 |  | fvex |  |-  ( ( [,) o. F ) ` j ) e. _V | 
						
							| 41 | 26 40 | iunex |  |-  U_ j e. NN ( ( [,) o. F ) ` j ) e. _V | 
						
							| 42 | 41 | a1i |  |-  ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) e. _V ) | 
						
							| 43 | 20 | a1i |  |-  ( ph -> { A } e. _V ) | 
						
							| 44 | 1 | snn0d |  |-  ( ph -> { A } =/= (/) ) | 
						
							| 45 | 5 42 43 44 | mapss2 |  |-  ( ph -> ( B C_ U_ j e. NN ( ( [,) o. F ) ` j ) <-> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) ) | 
						
							| 46 | 39 45 | mpbid |  |-  ( ph -> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) | 
						
							| 47 |  | nfv |  |-  F/ j ph | 
						
							| 48 |  | fvexd |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` ( F ` j ) ) e. _V ) | 
						
							| 49 | 47 27 48 1 | iunmapsn |  |-  ( ph -> U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) = ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ph -> ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) = U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) ) | 
						
							| 51 |  | elmapfun |  |-  ( F e. ( ( RR X. RR ) ^m NN ) -> Fun F ) | 
						
							| 52 | 2 51 | syl |  |-  ( ph -> Fun F ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ j e. NN ) -> Fun F ) | 
						
							| 54 |  | simpr |  |-  ( ( ph /\ j e. NN ) -> j e. NN ) | 
						
							| 55 | 10 | fdmd |  |-  ( ph -> dom F = NN ) | 
						
							| 56 | 55 | eqcomd |  |-  ( ph -> NN = dom F ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ j e. NN ) -> NN = dom F ) | 
						
							| 58 | 54 57 | eleqtrd |  |-  ( ( ph /\ j e. NN ) -> j e. dom F ) | 
						
							| 59 |  | fvco |  |-  ( ( Fun F /\ j e. dom F ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 60 | 53 58 59 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 61 | 60 | iuneq2dv |  |-  ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) = U_ j e. NN ( [,) ` ( F ` j ) ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( ph -> ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) = ( U_ j e. NN ( [,) ` ( F ` j ) ) ^m { A } ) ) | 
						
							| 63 | 14 | ffund |  |-  ( ( ph /\ j e. NN ) -> Fun { <. A , ( F ` j ) >. } ) | 
						
							| 64 |  | id |  |-  ( j e. NN -> j e. NN ) | 
						
							| 65 |  | snex |  |-  { <. A , ( F ` j ) >. } e. _V | 
						
							| 66 | 65 | a1i |  |-  ( j e. NN -> { <. A , ( F ` j ) >. } e. _V ) | 
						
							| 67 | 3 | fvmpt2 |  |-  ( ( j e. NN /\ { <. A , ( F ` j ) >. } e. _V ) -> ( I ` j ) = { <. A , ( F ` j ) >. } ) | 
						
							| 68 | 64 66 67 | syl2anc |  |-  ( j e. NN -> ( I ` j ) = { <. A , ( F ` j ) >. } ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ph /\ j e. NN ) -> ( I ` j ) = { <. A , ( F ` j ) >. } ) | 
						
							| 70 | 69 | funeqd |  |-  ( ( ph /\ j e. NN ) -> ( Fun ( I ` j ) <-> Fun { <. A , ( F ` j ) >. } ) ) | 
						
							| 71 | 63 70 | mpbird |  |-  ( ( ph /\ j e. NN ) -> Fun ( I ` j ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> Fun ( I ` j ) ) | 
						
							| 73 |  | simpr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> k e. { A } ) | 
						
							| 74 | 69 | dmeqd |  |-  ( ( ph /\ j e. NN ) -> dom ( I ` j ) = dom { <. A , ( F ` j ) >. } ) | 
						
							| 75 | 14 | fdmd |  |-  ( ( ph /\ j e. NN ) -> dom { <. A , ( F ` j ) >. } = { A } ) | 
						
							| 76 | 74 75 | eqtrd |  |-  ( ( ph /\ j e. NN ) -> dom ( I ` j ) = { A } ) | 
						
							| 77 | 76 | eleq2d |  |-  ( ( ph /\ j e. NN ) -> ( k e. dom ( I ` j ) <-> k e. { A } ) ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( k e. dom ( I ` j ) <-> k e. { A } ) ) | 
						
							| 79 | 73 78 | mpbird |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> k e. dom ( I ` j ) ) | 
						
							| 80 |  | fvco |  |-  ( ( Fun ( I ` j ) /\ k e. dom ( I ` j ) ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( ( I ` j ) ` k ) ) ) | 
						
							| 81 | 72 79 80 | syl2anc |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( ( I ` j ) ` k ) ) ) | 
						
							| 82 | 68 | fveq1d |  |-  ( j e. NN -> ( ( I ` j ) ` k ) = ( { <. A , ( F ` j ) >. } ` k ) ) | 
						
							| 83 | 82 | ad2antlr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( I ` j ) ` k ) = ( { <. A , ( F ` j ) >. } ` k ) ) | 
						
							| 84 |  | elsni |  |-  ( k e. { A } -> k = A ) | 
						
							| 85 | 84 | fveq2d |  |-  ( k e. { A } -> ( { <. A , ( F ` j ) >. } ` k ) = ( { <. A , ( F ` j ) >. } ` A ) ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( { <. A , ( F ` j ) >. } ` k ) = ( { <. A , ( F ` j ) >. } ` A ) ) | 
						
							| 87 |  | fvexd |  |-  ( ph -> ( F ` j ) e. _V ) | 
						
							| 88 |  | fvsng |  |-  ( ( A e. V /\ ( F ` j ) e. _V ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) | 
						
							| 89 | 1 87 88 | syl2anc |  |-  ( ph -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) | 
						
							| 90 | 89 | ad2antrr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) | 
						
							| 91 | 83 86 90 | 3eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( I ` j ) ` k ) = ( F ` j ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( [,) ` ( ( I ` j ) ` k ) ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 93 |  | eqidd |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( [,) ` ( F ` j ) ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 94 | 81 92 93 | 3eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 95 | 94 | ixpeq2dva |  |-  ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = X_ k e. { A } ( [,) ` ( F ` j ) ) ) | 
						
							| 96 |  | fvex |  |-  ( [,) ` ( F ` j ) ) e. _V | 
						
							| 97 | 20 96 | ixpconst |  |-  X_ k e. { A } ( [,) ` ( F ` j ) ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) | 
						
							| 98 | 97 | a1i |  |-  ( ( ph /\ j e. NN ) -> X_ k e. { A } ( [,) ` ( F ` j ) ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) ) | 
						
							| 99 | 95 98 | eqtrd |  |-  ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) ` ( F ` j ) ) ^m { A } ) ) | 
						
							| 100 | 99 | iuneq2dv |  |-  ( ph -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = U_ j e. NN ( ( [,) ` ( F ` j ) ) ^m { A } ) ) | 
						
							| 101 | 50 62 100 | 3eqtr4d |  |-  ( ph -> ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) = U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) | 
						
							| 102 | 46 101 | sseqtrd |  |-  ( ph -> ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) | 
						
							| 103 |  | nfcv |  |-  F/_ j F | 
						
							| 104 |  | ressxr |  |-  RR C_ RR* | 
						
							| 105 |  | xpss2 |  |-  ( RR C_ RR* -> ( RR X. RR ) C_ ( RR X. RR* ) ) | 
						
							| 106 | 104 105 | ax-mp |  |-  ( RR X. RR ) C_ ( RR X. RR* ) | 
						
							| 107 | 106 | a1i |  |-  ( ph -> ( RR X. RR ) C_ ( RR X. RR* ) ) | 
						
							| 108 | 10 107 | fssd |  |-  ( ph -> F : NN --> ( RR X. RR* ) ) | 
						
							| 109 | 103 108 | volicofmpt |  |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) ) | 
						
							| 110 | 68 | coeq2d |  |-  ( j e. NN -> ( [,) o. ( I ` j ) ) = ( [,) o. { <. A , ( F ` j ) >. } ) ) | 
						
							| 111 | 110 | fveq1d |  |-  ( j e. NN -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) ) | 
						
							| 112 | 111 | adantl |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) ) | 
						
							| 113 |  | snidg |  |-  ( A e. V -> A e. { A } ) | 
						
							| 114 | 1 113 | syl |  |-  ( ph -> A e. { A } ) | 
						
							| 115 |  | dmsnopg |  |-  ( ( F ` j ) e. _V -> dom { <. A , ( F ` j ) >. } = { A } ) | 
						
							| 116 | 87 115 | syl |  |-  ( ph -> dom { <. A , ( F ` j ) >. } = { A } ) | 
						
							| 117 | 114 116 | eleqtrrd |  |-  ( ph -> A e. dom { <. A , ( F ` j ) >. } ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ph /\ j e. NN ) -> A e. dom { <. A , ( F ` j ) >. } ) | 
						
							| 119 |  | fvco |  |-  ( ( Fun { <. A , ( F ` j ) >. } /\ A e. dom { <. A , ( F ` j ) >. } ) -> ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) = ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) ) | 
						
							| 120 | 63 118 119 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. { <. A , ( F ` j ) >. } ) ` A ) = ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) ) | 
						
							| 121 |  | fvexd |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) e. _V ) | 
						
							| 122 | 8 121 88 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } ` A ) = ( F ` j ) ) | 
						
							| 123 |  | 1st2nd2 |  |-  ( ( F ` j ) e. ( RR X. RR ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) | 
						
							| 124 | 11 123 | syl |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) | 
						
							| 125 | 122 124 | eqtrd |  |-  ( ( ph /\ j e. NN ) -> ( { <. A , ( F ` j ) >. } ` A ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) | 
						
							| 126 | 125 | fveq2d |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) ) | 
						
							| 127 |  | df-ov |  |-  ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) | 
						
							| 128 | 127 | eqcomi |  |-  ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) | 
						
							| 129 | 128 | a1i |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) | 
						
							| 130 | 126 129 | eqtrd |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` ( { <. A , ( F ` j ) >. } ` A ) ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) | 
						
							| 131 | 112 120 130 | 3eqtrd |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) | 
						
							| 132 | 131 | fveq2d |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) = ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) | 
						
							| 133 |  | xp1st |  |-  ( ( F ` j ) e. ( RR X. RR ) -> ( 1st ` ( F ` j ) ) e. RR ) | 
						
							| 134 | 11 133 | syl |  |-  ( ( ph /\ j e. NN ) -> ( 1st ` ( F ` j ) ) e. RR ) | 
						
							| 135 |  | xp2nd |  |-  ( ( F ` j ) e. ( RR X. RR ) -> ( 2nd ` ( F ` j ) ) e. RR ) | 
						
							| 136 | 11 135 | syl |  |-  ( ( ph /\ j e. NN ) -> ( 2nd ` ( F ` j ) ) e. RR ) | 
						
							| 137 |  | volicore |  |-  ( ( ( 1st ` ( F ` j ) ) e. RR /\ ( 2nd ` ( F ` j ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) | 
						
							| 138 | 134 136 137 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) | 
						
							| 139 | 132 138 | eqeltrd |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. RR ) | 
						
							| 140 | 139 | recnd |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) | 
						
							| 141 |  | 2fveq3 |  |-  ( k = A -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) | 
						
							| 142 | 141 | prodsn |  |-  ( ( A e. V /\ ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) | 
						
							| 143 | 8 140 142 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) | 
						
							| 144 | 143 132 | eqtr2d |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) = prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) | 
						
							| 145 | 144 | mpteq2dva |  |-  ( ph -> ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) | 
						
							| 146 | 109 145 | eqtrd |  |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) | 
						
							| 147 | 146 | fveq2d |  |-  ( ph -> ( sum^ ` ( ( vol o. [,) ) o. F ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) | 
						
							| 148 | 6 147 | eqtrd |  |-  ( ph -> Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) | 
						
							| 149 | 102 148 | jca |  |-  ( ph -> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) | 
						
							| 150 |  | fveq1 |  |-  ( i = I -> ( i ` j ) = ( I ` j ) ) | 
						
							| 151 | 150 | coeq2d |  |-  ( i = I -> ( [,) o. ( i ` j ) ) = ( [,) o. ( I ` j ) ) ) | 
						
							| 152 | 151 | fveq1d |  |-  ( i = I -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) | 
						
							| 153 | 152 | ixpeq2dv |  |-  ( i = I -> X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) = X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) | 
						
							| 154 | 153 | iuneq2d |  |-  ( i = I -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) = U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) | 
						
							| 155 | 154 | sseq2d |  |-  ( i = I -> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) <-> ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) ) | 
						
							| 156 |  | simpl |  |-  ( ( i = I /\ k e. { A } ) -> i = I ) | 
						
							| 157 | 156 | fveq1d |  |-  ( ( i = I /\ k e. { A } ) -> ( i ` j ) = ( I ` j ) ) | 
						
							| 158 | 157 | coeq2d |  |-  ( ( i = I /\ k e. { A } ) -> ( [,) o. ( i ` j ) ) = ( [,) o. ( I ` j ) ) ) | 
						
							| 159 | 158 | fveq1d |  |-  ( ( i = I /\ k e. { A } ) -> ( ( [,) o. ( i ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) | 
						
							| 160 | 159 | fveq2d |  |-  ( ( i = I /\ k e. { A } ) -> ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) | 
						
							| 161 | 160 | prodeq2dv |  |-  ( i = I -> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) = prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) | 
						
							| 162 | 161 | mpteq2dv |  |-  ( i = I -> ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) | 
						
							| 163 | 162 | fveq2d |  |-  ( i = I -> ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) | 
						
							| 164 | 163 | eqeq2d |  |-  ( i = I -> ( Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) <-> Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) | 
						
							| 165 | 155 164 | anbi12d |  |-  ( i = I -> ( ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) <-> ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) ) | 
						
							| 166 | 165 | rspcev |  |-  ( ( I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) /\ ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) ) -> E. i e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) | 
						
							| 167 | 29 149 166 | syl2anc |  |-  ( ph -> E. i e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ( ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( i ` j ) ) ` k ) /\ Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) |