| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnovollem2.a |
|- ( ph -> A e. V ) |
| 2 |
|
ovnovollem2.b |
|- ( ph -> B e. W ) |
| 3 |
|
ovnovollem2.i |
|- ( ph -> I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ) |
| 4 |
|
ovnovollem2.s |
|- ( ph -> ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) |
| 5 |
|
ovnovollem2.z |
|- ( ph -> Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
| 6 |
|
ovnovollem2.f |
|- F = ( j e. NN |-> ( ( I ` j ) ` A ) ) |
| 7 |
|
elmapi |
|- ( I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) |
| 8 |
3 7
|
syl |
|- ( ph -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ j e. NN ) -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ j e. NN ) -> j e. NN ) |
| 11 |
9 10
|
ffvelcdmd |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) e. ( ( RR X. RR ) ^m { A } ) ) |
| 12 |
|
elmapi |
|- ( ( I ` j ) e. ( ( RR X. RR ) ^m { A } ) -> ( I ` j ) : { A } --> ( RR X. RR ) ) |
| 13 |
11 12
|
syl |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) : { A } --> ( RR X. RR ) ) |
| 14 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
| 15 |
1 14
|
syl |
|- ( ph -> A e. { A } ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ j e. NN ) -> A e. { A } ) |
| 17 |
13 16
|
ffvelcdmd |
|- ( ( ph /\ j e. NN ) -> ( ( I ` j ) ` A ) e. ( RR X. RR ) ) |
| 18 |
17 6
|
fmptd |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
| 19 |
|
reex |
|- RR e. _V |
| 20 |
19 19
|
xpex |
|- ( RR X. RR ) e. _V |
| 21 |
|
nnex |
|- NN e. _V |
| 22 |
20 21
|
elmap |
|- ( F e. ( ( RR X. RR ) ^m NN ) <-> F : NN --> ( RR X. RR ) ) |
| 23 |
22
|
a1i |
|- ( ph -> ( F e. ( ( RR X. RR ) ^m NN ) <-> F : NN --> ( RR X. RR ) ) ) |
| 24 |
18 23
|
mpbird |
|- ( ph -> F e. ( ( RR X. RR ) ^m NN ) ) |
| 25 |
|
elsni |
|- ( k e. { A } -> k = A ) |
| 26 |
25
|
fveq2d |
|- ( k e. { A } -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` A ) ) |
| 27 |
26
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` A ) ) |
| 28 |
|
elmapfun |
|- ( ( I ` j ) e. ( ( RR X. RR ) ^m { A } ) -> Fun ( I ` j ) ) |
| 29 |
11 28
|
syl |
|- ( ( ph /\ j e. NN ) -> Fun ( I ` j ) ) |
| 30 |
13
|
fdmd |
|- ( ( ph /\ j e. NN ) -> dom ( I ` j ) = { A } ) |
| 31 |
30
|
eqcomd |
|- ( ( ph /\ j e. NN ) -> { A } = dom ( I ` j ) ) |
| 32 |
16 31
|
eleqtrd |
|- ( ( ph /\ j e. NN ) -> A e. dom ( I ` j ) ) |
| 33 |
|
fvco |
|- ( ( Fun ( I ` j ) /\ A e. dom ( I ` j ) ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( [,) ` ( ( I ` j ) ` A ) ) ) |
| 34 |
29 32 33
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( [,) ` ( ( I ` j ) ` A ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( [,) ` ( ( I ` j ) ` A ) ) ) |
| 36 |
|
id |
|- ( j e. NN -> j e. NN ) |
| 37 |
|
fvexd |
|- ( j e. NN -> ( ( I ` j ) ` A ) e. _V ) |
| 38 |
6
|
fvmpt2 |
|- ( ( j e. NN /\ ( ( I ` j ) ` A ) e. _V ) -> ( F ` j ) = ( ( I ` j ) ` A ) ) |
| 39 |
36 37 38
|
syl2anc |
|- ( j e. NN -> ( F ` j ) = ( ( I ` j ) ` A ) ) |
| 40 |
39
|
eqcomd |
|- ( j e. NN -> ( ( I ` j ) ` A ) = ( F ` j ) ) |
| 41 |
40
|
fveq2d |
|- ( j e. NN -> ( [,) ` ( ( I ` j ) ` A ) ) = ( [,) ` ( F ` j ) ) ) |
| 42 |
41
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( ( I ` j ) ` A ) ) = ( [,) ` ( F ` j ) ) ) |
| 43 |
18
|
ffund |
|- ( ph -> Fun F ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ j e. NN ) -> Fun F ) |
| 45 |
6 17
|
dmmptd |
|- ( ph -> dom F = NN ) |
| 46 |
45
|
eqcomd |
|- ( ph -> NN = dom F ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ j e. NN ) -> NN = dom F ) |
| 48 |
10 47
|
eleqtrd |
|- ( ( ph /\ j e. NN ) -> j e. dom F ) |
| 49 |
|
fvco |
|- ( ( Fun F /\ j e. dom F ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) |
| 50 |
44 48 49
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) |
| 51 |
50
|
eqcomd |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( F ` j ) ) = ( ( [,) o. F ) ` j ) ) |
| 52 |
42 51
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( ( I ` j ) ` A ) ) = ( ( [,) o. F ) ` j ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( [,) ` ( ( I ` j ) ` A ) ) = ( ( [,) o. F ) ` j ) ) |
| 54 |
27 35 53
|
3eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) o. F ) ` j ) ) |
| 55 |
54
|
ixpeq2dva |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = X_ k e. { A } ( ( [,) o. F ) ` j ) ) |
| 56 |
|
snex |
|- { A } e. _V |
| 57 |
|
fvex |
|- ( ( [,) o. F ) ` j ) e. _V |
| 58 |
56 57
|
ixpconst |
|- X_ k e. { A } ( ( [,) o. F ) ` j ) = ( ( ( [,) o. F ) ` j ) ^m { A } ) |
| 59 |
58
|
a1i |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. F ) ` j ) = ( ( ( [,) o. F ) ` j ) ^m { A } ) ) |
| 60 |
55 59
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = ( ( ( [,) o. F ) ` j ) ^m { A } ) ) |
| 61 |
60
|
iuneq2dv |
|- ( ph -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = U_ j e. NN ( ( ( [,) o. F ) ` j ) ^m { A } ) ) |
| 62 |
|
nfv |
|- F/ j ph |
| 63 |
21
|
a1i |
|- ( ph -> NN e. _V ) |
| 64 |
|
fvexd |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) e. _V ) |
| 65 |
62 63 64 1
|
iunmapsn |
|- ( ph -> U_ j e. NN ( ( ( [,) o. F ) ` j ) ^m { A } ) = ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) |
| 66 |
61 65
|
eqtrd |
|- ( ph -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) |
| 67 |
4 66
|
sseqtrd |
|- ( ph -> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) |
| 68 |
21 57
|
iunex |
|- U_ j e. NN ( ( [,) o. F ) ` j ) e. _V |
| 69 |
68
|
a1i |
|- ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) e. _V ) |
| 70 |
56
|
a1i |
|- ( ph -> { A } e. _V ) |
| 71 |
15
|
ne0d |
|- ( ph -> { A } =/= (/) ) |
| 72 |
2 69 70 71
|
mapss2 |
|- ( ph -> ( B C_ U_ j e. NN ( ( [,) o. F ) ` j ) <-> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) ) |
| 73 |
67 72
|
mpbird |
|- ( ph -> B C_ U_ j e. NN ( ( [,) o. F ) ` j ) ) |
| 74 |
|
icof |
|- [,) : ( RR* X. RR* ) --> ~P RR* |
| 75 |
74
|
a1i |
|- ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) |
| 76 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 77 |
76
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) |
| 78 |
75 77 18
|
fcoss |
|- ( ph -> ( [,) o. F ) : NN --> ~P RR* ) |
| 79 |
78
|
ffnd |
|- ( ph -> ( [,) o. F ) Fn NN ) |
| 80 |
|
fniunfv |
|- ( ( [,) o. F ) Fn NN -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) |
| 81 |
79 80
|
syl |
|- ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) |
| 82 |
73 81
|
sseqtrd |
|- ( ph -> B C_ U. ran ( [,) o. F ) ) |
| 83 |
|
nfcv |
|- F/_ j F |
| 84 |
|
ressxr |
|- RR C_ RR* |
| 85 |
|
xpss2 |
|- ( RR C_ RR* -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
| 86 |
84 85
|
ax-mp |
|- ( RR X. RR ) C_ ( RR X. RR* ) |
| 87 |
86
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
| 88 |
18 87
|
fssd |
|- ( ph -> F : NN --> ( RR X. RR* ) ) |
| 89 |
83 88
|
volicofmpt |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) ) |
| 90 |
1
|
adantr |
|- ( ( ph /\ j e. NN ) -> A e. V ) |
| 91 |
|
fvexd |
|- ( ( ph /\ j e. NN ) -> ( ( I ` j ) ` A ) e. _V ) |
| 92 |
10 91 38
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) = ( ( I ` j ) ` A ) ) |
| 93 |
92 17
|
eqeltrd |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) e. ( RR X. RR ) ) |
| 94 |
|
1st2nd2 |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
| 95 |
93 94
|
syl |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
| 96 |
95
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( [,) ` ( F ` j ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) ) |
| 97 |
|
df-ov |
|- ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) |
| 98 |
97
|
eqcomi |
|- ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) |
| 99 |
98
|
a1i |
|- ( ( ph /\ j e. NN ) -> ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
| 100 |
50 96 99
|
3eqtrd |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
| 101 |
34 52 100
|
3eqtrd |
|- ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) |
| 102 |
101
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) = ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) |
| 103 |
|
xp1st |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( 1st ` ( F ` j ) ) e. RR ) |
| 104 |
93 103
|
syl |
|- ( ( ph /\ j e. NN ) -> ( 1st ` ( F ` j ) ) e. RR ) |
| 105 |
|
xp2nd |
|- ( ( F ` j ) e. ( RR X. RR ) -> ( 2nd ` ( F ` j ) ) e. RR ) |
| 106 |
93 105
|
syl |
|- ( ( ph /\ j e. NN ) -> ( 2nd ` ( F ` j ) ) e. RR ) |
| 107 |
|
volicore |
|- ( ( ( 1st ` ( F ` j ) ) e. RR /\ ( 2nd ` ( F ` j ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) |
| 108 |
104 106 107
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) |
| 109 |
102 108
|
eqeltrd |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. RR ) |
| 110 |
109
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) |
| 111 |
|
2fveq3 |
|- ( k = A -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
| 112 |
111
|
prodsn |
|- ( ( A e. V /\ ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
| 113 |
90 110 112
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) |
| 114 |
113 102
|
eqtr2d |
|- ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) = prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
| 115 |
114
|
mpteq2dva |
|- ( ph -> ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
| 116 |
89 115
|
eqtrd |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) |
| 117 |
116
|
fveq2d |
|- ( ph -> ( sum^ ` ( ( vol o. [,) ) o. F ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) |
| 118 |
5 117
|
eqtr4d |
|- ( ph -> Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) |
| 119 |
82 118
|
jca |
|- ( ph -> ( B C_ U. ran ( [,) o. F ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) ) |
| 120 |
|
coeq2 |
|- ( f = F -> ( [,) o. f ) = ( [,) o. F ) ) |
| 121 |
120
|
rneqd |
|- ( f = F -> ran ( [,) o. f ) = ran ( [,) o. F ) ) |
| 122 |
121
|
unieqd |
|- ( f = F -> U. ran ( [,) o. f ) = U. ran ( [,) o. F ) ) |
| 123 |
122
|
sseq2d |
|- ( f = F -> ( B C_ U. ran ( [,) o. f ) <-> B C_ U. ran ( [,) o. F ) ) ) |
| 124 |
|
coeq2 |
|- ( f = F -> ( ( vol o. [,) ) o. f ) = ( ( vol o. [,) ) o. F ) ) |
| 125 |
124
|
fveq2d |
|- ( f = F -> ( sum^ ` ( ( vol o. [,) ) o. f ) ) = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) |
| 126 |
125
|
eqeq2d |
|- ( f = F -> ( Z = ( sum^ ` ( ( vol o. [,) ) o. f ) ) <-> Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) ) |
| 127 |
123 126
|
anbi12d |
|- ( f = F -> ( ( B C_ U. ran ( [,) o. f ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. f ) ) ) <-> ( B C_ U. ran ( [,) o. F ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) ) ) |
| 128 |
127
|
rspcev |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ ( B C_ U. ran ( [,) o. F ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( B C_ U. ran ( [,) o. f ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. f ) ) ) ) |
| 129 |
24 119 128
|
syl2anc |
|- ( ph -> E. f e. ( ( RR X. RR ) ^m NN ) ( B C_ U. ran ( [,) o. f ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. f ) ) ) ) |