| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovnovollem2.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | ovnovollem2.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | ovnovollem2.i |  |-  ( ph -> I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) ) | 
						
							| 4 |  | ovnovollem2.s |  |-  ( ph -> ( B ^m { A } ) C_ U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) ) | 
						
							| 5 |  | ovnovollem2.z |  |-  ( ph -> Z = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) | 
						
							| 6 |  | ovnovollem2.f |  |-  F = ( j e. NN |-> ( ( I ` j ) ` A ) ) | 
						
							| 7 |  | elmapi |  |-  ( I e. ( ( ( RR X. RR ) ^m { A } ) ^m NN ) -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ j e. NN ) -> I : NN --> ( ( RR X. RR ) ^m { A } ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ j e. NN ) -> j e. NN ) | 
						
							| 11 | 9 10 | ffvelcdmd |  |-  ( ( ph /\ j e. NN ) -> ( I ` j ) e. ( ( RR X. RR ) ^m { A } ) ) | 
						
							| 12 |  | elmapi |  |-  ( ( I ` j ) e. ( ( RR X. RR ) ^m { A } ) -> ( I ` j ) : { A } --> ( RR X. RR ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ph /\ j e. NN ) -> ( I ` j ) : { A } --> ( RR X. RR ) ) | 
						
							| 14 |  | snidg |  |-  ( A e. V -> A e. { A } ) | 
						
							| 15 | 1 14 | syl |  |-  ( ph -> A e. { A } ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ j e. NN ) -> A e. { A } ) | 
						
							| 17 | 13 16 | ffvelcdmd |  |-  ( ( ph /\ j e. NN ) -> ( ( I ` j ) ` A ) e. ( RR X. RR ) ) | 
						
							| 18 | 17 6 | fmptd |  |-  ( ph -> F : NN --> ( RR X. RR ) ) | 
						
							| 19 |  | reex |  |-  RR e. _V | 
						
							| 20 | 19 19 | xpex |  |-  ( RR X. RR ) e. _V | 
						
							| 21 |  | nnex |  |-  NN e. _V | 
						
							| 22 | 20 21 | elmap |  |-  ( F e. ( ( RR X. RR ) ^m NN ) <-> F : NN --> ( RR X. RR ) ) | 
						
							| 23 | 22 | a1i |  |-  ( ph -> ( F e. ( ( RR X. RR ) ^m NN ) <-> F : NN --> ( RR X. RR ) ) ) | 
						
							| 24 | 18 23 | mpbird |  |-  ( ph -> F e. ( ( RR X. RR ) ^m NN ) ) | 
						
							| 25 |  | elsni |  |-  ( k e. { A } -> k = A ) | 
						
							| 26 | 25 | fveq2d |  |-  ( k e. { A } -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` A ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` A ) ) | 
						
							| 28 |  | elmapfun |  |-  ( ( I ` j ) e. ( ( RR X. RR ) ^m { A } ) -> Fun ( I ` j ) ) | 
						
							| 29 | 11 28 | syl |  |-  ( ( ph /\ j e. NN ) -> Fun ( I ` j ) ) | 
						
							| 30 | 13 | fdmd |  |-  ( ( ph /\ j e. NN ) -> dom ( I ` j ) = { A } ) | 
						
							| 31 | 30 | eqcomd |  |-  ( ( ph /\ j e. NN ) -> { A } = dom ( I ` j ) ) | 
						
							| 32 | 16 31 | eleqtrd |  |-  ( ( ph /\ j e. NN ) -> A e. dom ( I ` j ) ) | 
						
							| 33 |  | fvco |  |-  ( ( Fun ( I ` j ) /\ A e. dom ( I ` j ) ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( [,) ` ( ( I ` j ) ` A ) ) ) | 
						
							| 34 | 29 32 33 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( [,) ` ( ( I ` j ) ` A ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( [,) ` ( ( I ` j ) ` A ) ) ) | 
						
							| 36 |  | id |  |-  ( j e. NN -> j e. NN ) | 
						
							| 37 |  | fvexd |  |-  ( j e. NN -> ( ( I ` j ) ` A ) e. _V ) | 
						
							| 38 | 6 | fvmpt2 |  |-  ( ( j e. NN /\ ( ( I ` j ) ` A ) e. _V ) -> ( F ` j ) = ( ( I ` j ) ` A ) ) | 
						
							| 39 | 36 37 38 | syl2anc |  |-  ( j e. NN -> ( F ` j ) = ( ( I ` j ) ` A ) ) | 
						
							| 40 | 39 | eqcomd |  |-  ( j e. NN -> ( ( I ` j ) ` A ) = ( F ` j ) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( j e. NN -> ( [,) ` ( ( I ` j ) ` A ) ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` ( ( I ` j ) ` A ) ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 43 | 18 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ j e. NN ) -> Fun F ) | 
						
							| 45 | 6 17 | dmmptd |  |-  ( ph -> dom F = NN ) | 
						
							| 46 | 45 | eqcomd |  |-  ( ph -> NN = dom F ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ph /\ j e. NN ) -> NN = dom F ) | 
						
							| 48 | 10 47 | eleqtrd |  |-  ( ( ph /\ j e. NN ) -> j e. dom F ) | 
						
							| 49 |  | fvco |  |-  ( ( Fun F /\ j e. dom F ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 50 | 44 48 49 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) = ( [,) ` ( F ` j ) ) ) | 
						
							| 51 | 50 | eqcomd |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` ( F ` j ) ) = ( ( [,) o. F ) ` j ) ) | 
						
							| 52 | 42 51 | eqtrd |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` ( ( I ` j ) ` A ) ) = ( ( [,) o. F ) ` j ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( [,) ` ( ( I ` j ) ` A ) ) = ( ( [,) o. F ) ` j ) ) | 
						
							| 54 | 27 35 53 | 3eqtrd |  |-  ( ( ( ph /\ j e. NN ) /\ k e. { A } ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( [,) o. F ) ` j ) ) | 
						
							| 55 | 54 | ixpeq2dva |  |-  ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = X_ k e. { A } ( ( [,) o. F ) ` j ) ) | 
						
							| 56 |  | snex |  |-  { A } e. _V | 
						
							| 57 |  | fvex |  |-  ( ( [,) o. F ) ` j ) e. _V | 
						
							| 58 | 56 57 | ixpconst |  |-  X_ k e. { A } ( ( [,) o. F ) ` j ) = ( ( ( [,) o. F ) ` j ) ^m { A } ) | 
						
							| 59 | 58 | a1i |  |-  ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. F ) ` j ) = ( ( ( [,) o. F ) ` j ) ^m { A } ) ) | 
						
							| 60 | 55 59 | eqtrd |  |-  ( ( ph /\ j e. NN ) -> X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = ( ( ( [,) o. F ) ` j ) ^m { A } ) ) | 
						
							| 61 | 60 | iuneq2dv |  |-  ( ph -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = U_ j e. NN ( ( ( [,) o. F ) ` j ) ^m { A } ) ) | 
						
							| 62 |  | nfv |  |-  F/ j ph | 
						
							| 63 | 21 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 64 |  | fvexd |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) e. _V ) | 
						
							| 65 | 62 63 64 1 | iunmapsn |  |-  ( ph -> U_ j e. NN ( ( ( [,) o. F ) ` j ) ^m { A } ) = ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) | 
						
							| 66 | 61 65 | eqtrd |  |-  ( ph -> U_ j e. NN X_ k e. { A } ( ( [,) o. ( I ` j ) ) ` k ) = ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) | 
						
							| 67 | 4 66 | sseqtrd |  |-  ( ph -> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) | 
						
							| 68 | 21 57 | iunex |  |-  U_ j e. NN ( ( [,) o. F ) ` j ) e. _V | 
						
							| 69 | 68 | a1i |  |-  ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) e. _V ) | 
						
							| 70 | 56 | a1i |  |-  ( ph -> { A } e. _V ) | 
						
							| 71 | 15 | ne0d |  |-  ( ph -> { A } =/= (/) ) | 
						
							| 72 | 2 69 70 71 | mapss2 |  |-  ( ph -> ( B C_ U_ j e. NN ( ( [,) o. F ) ` j ) <-> ( B ^m { A } ) C_ ( U_ j e. NN ( ( [,) o. F ) ` j ) ^m { A } ) ) ) | 
						
							| 73 | 67 72 | mpbird |  |-  ( ph -> B C_ U_ j e. NN ( ( [,) o. F ) ` j ) ) | 
						
							| 74 |  | icof |  |-  [,) : ( RR* X. RR* ) --> ~P RR* | 
						
							| 75 | 74 | a1i |  |-  ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) | 
						
							| 76 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 77 | 76 | a1i |  |-  ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) | 
						
							| 78 | 75 77 18 | fcoss |  |-  ( ph -> ( [,) o. F ) : NN --> ~P RR* ) | 
						
							| 79 | 78 | ffnd |  |-  ( ph -> ( [,) o. F ) Fn NN ) | 
						
							| 80 |  | fniunfv |  |-  ( ( [,) o. F ) Fn NN -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) | 
						
							| 81 | 79 80 | syl |  |-  ( ph -> U_ j e. NN ( ( [,) o. F ) ` j ) = U. ran ( [,) o. F ) ) | 
						
							| 82 | 73 81 | sseqtrd |  |-  ( ph -> B C_ U. ran ( [,) o. F ) ) | 
						
							| 83 |  | nfcv |  |-  F/_ j F | 
						
							| 84 |  | ressxr |  |-  RR C_ RR* | 
						
							| 85 |  | xpss2 |  |-  ( RR C_ RR* -> ( RR X. RR ) C_ ( RR X. RR* ) ) | 
						
							| 86 | 84 85 | ax-mp |  |-  ( RR X. RR ) C_ ( RR X. RR* ) | 
						
							| 87 | 86 | a1i |  |-  ( ph -> ( RR X. RR ) C_ ( RR X. RR* ) ) | 
						
							| 88 | 18 87 | fssd |  |-  ( ph -> F : NN --> ( RR X. RR* ) ) | 
						
							| 89 | 83 88 | volicofmpt |  |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) ) | 
						
							| 90 | 1 | adantr |  |-  ( ( ph /\ j e. NN ) -> A e. V ) | 
						
							| 91 |  | fvexd |  |-  ( ( ph /\ j e. NN ) -> ( ( I ` j ) ` A ) e. _V ) | 
						
							| 92 | 10 91 38 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) = ( ( I ` j ) ` A ) ) | 
						
							| 93 | 92 17 | eqeltrd |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) e. ( RR X. RR ) ) | 
						
							| 94 |  | 1st2nd2 |  |-  ( ( F ` j ) e. ( RR X. RR ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) = <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) | 
						
							| 96 | 95 | fveq2d |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` ( F ` j ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) ) | 
						
							| 97 |  | df-ov |  |-  ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) = ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) | 
						
							| 98 | 97 | eqcomi |  |-  ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) | 
						
							| 99 | 98 | a1i |  |-  ( ( ph /\ j e. NN ) -> ( [,) ` <. ( 1st ` ( F ` j ) ) , ( 2nd ` ( F ` j ) ) >. ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) | 
						
							| 100 | 50 96 99 | 3eqtrd |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. F ) ` j ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) | 
						
							| 101 | 34 52 100 | 3eqtrd |  |-  ( ( ph /\ j e. NN ) -> ( ( [,) o. ( I ` j ) ) ` A ) = ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) = ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) | 
						
							| 103 |  | xp1st |  |-  ( ( F ` j ) e. ( RR X. RR ) -> ( 1st ` ( F ` j ) ) e. RR ) | 
						
							| 104 | 93 103 | syl |  |-  ( ( ph /\ j e. NN ) -> ( 1st ` ( F ` j ) ) e. RR ) | 
						
							| 105 |  | xp2nd |  |-  ( ( F ` j ) e. ( RR X. RR ) -> ( 2nd ` ( F ` j ) ) e. RR ) | 
						
							| 106 | 93 105 | syl |  |-  ( ( ph /\ j e. NN ) -> ( 2nd ` ( F ` j ) ) e. RR ) | 
						
							| 107 |  | volicore |  |-  ( ( ( 1st ` ( F ` j ) ) e. RR /\ ( 2nd ` ( F ` j ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) | 
						
							| 108 | 104 106 107 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) e. RR ) | 
						
							| 109 | 102 108 | eqeltrd |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. RR ) | 
						
							| 110 | 109 | recnd |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) | 
						
							| 111 |  | 2fveq3 |  |-  ( k = A -> ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) | 
						
							| 112 | 111 | prodsn |  |-  ( ( A e. V /\ ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) e. CC ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) | 
						
							| 113 | 90 110 112 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) = ( vol ` ( ( [,) o. ( I ` j ) ) ` A ) ) ) | 
						
							| 114 | 113 102 | eqtr2d |  |-  ( ( ph /\ j e. NN ) -> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) = prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) | 
						
							| 115 | 114 | mpteq2dva |  |-  ( ph -> ( j e. NN |-> ( vol ` ( ( 1st ` ( F ` j ) ) [,) ( 2nd ` ( F ` j ) ) ) ) ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) | 
						
							| 116 | 89 115 | eqtrd |  |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) | 
						
							| 117 | 116 | fveq2d |  |-  ( ph -> ( sum^ ` ( ( vol o. [,) ) o. F ) ) = ( sum^ ` ( j e. NN |-> prod_ k e. { A } ( vol ` ( ( [,) o. ( I ` j ) ) ` k ) ) ) ) ) | 
						
							| 118 | 5 117 | eqtr4d |  |-  ( ph -> Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) | 
						
							| 119 | 82 118 | jca |  |-  ( ph -> ( B C_ U. ran ( [,) o. F ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) ) | 
						
							| 120 |  | coeq2 |  |-  ( f = F -> ( [,) o. f ) = ( [,) o. F ) ) | 
						
							| 121 | 120 | rneqd |  |-  ( f = F -> ran ( [,) o. f ) = ran ( [,) o. F ) ) | 
						
							| 122 | 121 | unieqd |  |-  ( f = F -> U. ran ( [,) o. f ) = U. ran ( [,) o. F ) ) | 
						
							| 123 | 122 | sseq2d |  |-  ( f = F -> ( B C_ U. ran ( [,) o. f ) <-> B C_ U. ran ( [,) o. F ) ) ) | 
						
							| 124 |  | coeq2 |  |-  ( f = F -> ( ( vol o. [,) ) o. f ) = ( ( vol o. [,) ) o. F ) ) | 
						
							| 125 | 124 | fveq2d |  |-  ( f = F -> ( sum^ ` ( ( vol o. [,) ) o. f ) ) = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) | 
						
							| 126 | 125 | eqeq2d |  |-  ( f = F -> ( Z = ( sum^ ` ( ( vol o. [,) ) o. f ) ) <-> Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) ) | 
						
							| 127 | 123 126 | anbi12d |  |-  ( f = F -> ( ( B C_ U. ran ( [,) o. f ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. f ) ) ) <-> ( B C_ U. ran ( [,) o. F ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) ) ) | 
						
							| 128 | 127 | rspcev |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ ( B C_ U. ran ( [,) o. F ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( B C_ U. ran ( [,) o. f ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. f ) ) ) ) | 
						
							| 129 | 24 119 128 | syl2anc |  |-  ( ph -> E. f e. ( ( RR X. RR ) ^m NN ) ( B C_ U. ran ( [,) o. f ) /\ Z = ( sum^ ` ( ( vol o. [,) ) o. f ) ) ) ) |