Step |
Hyp |
Ref |
Expression |
1 |
|
ovnovollem2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
ovnovollem2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
ovnovollem2.i |
⊢ ( 𝜑 → 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ) |
4 |
|
ovnovollem2.s |
⊢ ( 𝜑 → ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
5 |
|
ovnovollem2.z |
⊢ ( 𝜑 → 𝑍 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
6 |
|
ovnovollem2.f |
⊢ 𝐹 = ( 𝑗 ∈ ℕ ↦ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) |
7 |
|
elmapi |
⊢ ( 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) → 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
11 |
9 10
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐼 ‘ 𝑗 ) ∈ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ) |
12 |
|
elmapi |
⊢ ( ( 𝐼 ‘ 𝑗 ) ∈ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) → ( 𝐼 ‘ 𝑗 ) : { 𝐴 } ⟶ ( ℝ × ℝ ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐼 ‘ 𝑗 ) : { 𝐴 } ⟶ ( ℝ × ℝ ) ) |
14 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ { 𝐴 } ) |
17 |
13 16
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) |
18 |
17 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
19 |
|
reex |
⊢ ℝ ∈ V |
20 |
19 19
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
21 |
|
nnex |
⊢ ℕ ∈ V |
22 |
20 21
|
elmap |
⊢ ( 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
23 |
22
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) ) |
24 |
18 23
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) |
25 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝐴 } → 𝑘 = 𝐴 ) |
26 |
25
|
fveq2d |
⊢ ( 𝑘 ∈ { 𝐴 } → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) |
28 |
|
elmapfun |
⊢ ( ( 𝐼 ‘ 𝑗 ) ∈ ( ( ℝ × ℝ ) ↑m { 𝐴 } ) → Fun ( 𝐼 ‘ 𝑗 ) ) |
29 |
11 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Fun ( 𝐼 ‘ 𝑗 ) ) |
30 |
13
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → dom ( 𝐼 ‘ 𝑗 ) = { 𝐴 } ) |
31 |
30
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { 𝐴 } = dom ( 𝐼 ‘ 𝑗 ) ) |
32 |
16 31
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ dom ( 𝐼 ‘ 𝑗 ) ) |
33 |
|
fvco |
⊢ ( ( Fun ( 𝐼 ‘ 𝑗 ) ∧ 𝐴 ∈ dom ( 𝐼 ‘ 𝑗 ) ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) = ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) ) |
34 |
29 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) = ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) = ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) ) |
36 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
37 |
|
fvexd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ∈ V ) |
38 |
6
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ℕ ∧ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ∈ V ) → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) |
39 |
36 37 38
|
syl2anc |
⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) |
40 |
39
|
eqcomd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝑗 ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝑗 ∈ ℕ → ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
43 |
18
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Fun 𝐹 ) |
45 |
6 17
|
dmmptd |
⊢ ( 𝜑 → dom 𝐹 = ℕ ) |
46 |
45
|
eqcomd |
⊢ ( 𝜑 → ℕ = dom 𝐹 ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ℕ = dom 𝐹 ) |
48 |
10 47
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ dom 𝐹 ) |
49 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑗 ∈ dom 𝐹 ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
50 |
44 48 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
51 |
50
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) = ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ) |
52 |
42 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) = ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( [,) ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) = ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ) |
54 |
27 35 53
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ { 𝐴 } ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ) |
55 |
54
|
ixpeq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ) |
56 |
|
snex |
⊢ { 𝐴 } ∈ V |
57 |
|
fvex |
⊢ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V |
58 |
56 57
|
ixpconst |
⊢ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) |
59 |
58
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) |
60 |
55 59
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) |
61 |
60
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ ( ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) |
62 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
63 |
21
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
64 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V ) |
65 |
62 63 64 1
|
iunmapsn |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) = ( ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) |
66 |
61 65
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) |
67 |
4 66
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐵 ↑m { 𝐴 } ) ⊆ ( ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) |
68 |
21 57
|
iunex |
⊢ ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V |
69 |
68
|
a1i |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ∈ V ) |
70 |
56
|
a1i |
⊢ ( 𝜑 → { 𝐴 } ∈ V ) |
71 |
15
|
ne0d |
⊢ ( 𝜑 → { 𝐴 } ≠ ∅ ) |
72 |
2 69 70 71
|
mapss2 |
⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↔ ( 𝐵 ↑m { 𝐴 } ) ⊆ ( ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ↑m { 𝐴 } ) ) ) |
73 |
67 72
|
mpbird |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) ) |
74 |
|
icof |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
75 |
74
|
a1i |
⊢ ( 𝜑 → [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* ) |
76 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
77 |
76
|
a1i |
⊢ ( 𝜑 → ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) |
78 |
75 77 18
|
fcoss |
⊢ ( 𝜑 → ( [,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ* ) |
79 |
78
|
ffnd |
⊢ ( 𝜑 → ( [,) ∘ 𝐹 ) Fn ℕ ) |
80 |
|
fniunfv |
⊢ ( ( [,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ∪ ran ( [,) ∘ 𝐹 ) ) |
81 |
79 80
|
syl |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ∪ ran ( [,) ∘ 𝐹 ) ) |
82 |
73 81
|
sseqtrd |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( [,) ∘ 𝐹 ) ) |
83 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐹 |
84 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
85 |
|
xpss2 |
⊢ ( ℝ ⊆ ℝ* → ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* ) ) |
86 |
84 85
|
ax-mp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* ) |
87 |
86
|
a1i |
⊢ ( 𝜑 → ( ℝ × ℝ ) ⊆ ( ℝ × ℝ* ) ) |
88 |
18 87
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ × ℝ* ) ) |
89 |
83 88
|
volicofmpt |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) ) |
90 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ 𝑉 ) |
91 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ∈ V ) |
92 |
10 91 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐼 ‘ 𝑗 ) ‘ 𝐴 ) ) |
93 |
92 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
94 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) |
95 |
93 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) |
96 |
95
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ ( 𝐹 ‘ 𝑗 ) ) = ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) ) |
97 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) = ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) |
98 |
97
|
eqcomi |
⊢ ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
99 |
98
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( [,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) 〉 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
100 |
50 96 99
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
101 |
34 52 100
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
102 |
101
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
103 |
|
xp1st |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
104 |
93 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
105 |
|
xp2nd |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
106 |
93 105
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
107 |
|
volicore |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
108 |
104 106 107
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
109 |
102 108
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ∈ ℝ ) |
110 |
109
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ∈ ℂ ) |
111 |
|
2fveq3 |
⊢ ( 𝑘 = 𝐴 → ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ) |
112 |
111
|
prodsn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ) |
113 |
90 110 112
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝐴 ) ) ) |
114 |
113 102
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) = ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
115 |
114
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( vol ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑗 ) ) [,) ( 2nd ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
116 |
89 115
|
eqtrd |
⊢ ( 𝜑 → ( ( vol ∘ [,) ) ∘ 𝐹 ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
117 |
116
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
118 |
5 117
|
eqtr4d |
⊢ ( 𝜑 → 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) ) |
119 |
82 118
|
jca |
⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝐹 ) ∧ 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) ) ) |
120 |
|
coeq2 |
⊢ ( 𝑓 = 𝐹 → ( [,) ∘ 𝑓 ) = ( [,) ∘ 𝐹 ) ) |
121 |
120
|
rneqd |
⊢ ( 𝑓 = 𝐹 → ran ( [,) ∘ 𝑓 ) = ran ( [,) ∘ 𝐹 ) ) |
122 |
121
|
unieqd |
⊢ ( 𝑓 = 𝐹 → ∪ ran ( [,) ∘ 𝑓 ) = ∪ ran ( [,) ∘ 𝐹 ) ) |
123 |
122
|
sseq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ↔ 𝐵 ⊆ ∪ ran ( [,) ∘ 𝐹 ) ) ) |
124 |
|
coeq2 |
⊢ ( 𝑓 = 𝐹 → ( ( vol ∘ [,) ) ∘ 𝑓 ) = ( ( vol ∘ [,) ) ∘ 𝐹 ) ) |
125 |
124
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) ) |
126 |
125
|
eqeq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ↔ 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) ) ) |
127 |
123 126
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ↔ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝐹 ) ∧ 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) ) ) ) |
128 |
127
|
rspcev |
⊢ ( ( 𝐹 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝐹 ) ∧ 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝐹 ) ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
129 |
24 119 128
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑍 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |