Metamath Proof Explorer


Theorem ovolval5lem3

Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval5lem3.m M = y * | f 2 A ran . f y = sum^ vol . f
ovolval5lem3.q Q = z * | f 2 A ran . f z = sum^ vol . f
Assertion ovolval5lem3 sup Q * < = sup M * <

Proof

Step Hyp Ref Expression
1 ovolval5lem3.m M = y * | f 2 A ran . f y = sum^ vol . f
2 ovolval5lem3.q Q = z * | f 2 A ran . f z = sum^ vol . f
3 ssrab2 z * | f 2 A ran . f z = sum^ vol . f *
4 2 3 eqsstri Q *
5 infxrcl Q * sup Q * < *
6 4 5 mp1i sup Q * < *
7 ssrab2 y * | f 2 A ran . f y = sum^ vol . f *
8 1 7 eqsstri M *
9 infxrcl M * sup M * < *
10 8 9 mp1i sup M * < *
11 4 a1i Q *
12 8 a1i M *
13 simpr y M w + w +
14 1 rabeq2i y M y * f 2 A ran . f y = sum^ vol . f
15 14 biimpi y M y * f 2 A ran . f y = sum^ vol . f
16 15 simprd y M f 2 A ran . f y = sum^ vol . f
17 16 adantr y M w + f 2 A ran . f y = sum^ vol . f
18 coeq2 g = f . g = . f
19 18 rneqd g = f ran . g = ran . f
20 19 unieqd g = f ran . g = ran . f
21 20 sseq2d g = f A ran . g A ran . f
22 coeq2 g = f vol . g = vol . f
23 22 fveq2d g = f sum^ vol . g = sum^ vol . f
24 23 eqeq2d g = f z = sum^ vol . g z = sum^ vol . f
25 21 24 anbi12d g = f A ran . g z = sum^ vol . g A ran . f z = sum^ vol . f
26 25 cbvrexvw g 2 A ran . g z = sum^ vol . g f 2 A ran . f z = sum^ vol . f
27 26 rabbii z * | g 2 A ran . g z = sum^ vol . g = z * | f 2 A ran . f z = sum^ vol . f
28 2 27 eqtr4i Q = z * | g 2 A ran . g z = sum^ vol . g
29 simp3r w + f 2 A ran . f y = sum^ vol . f y = sum^ vol . f
30 eqid sum^ vol . m 1 st f m w 2 m 2 nd f m = sum^ vol . m 1 st f m w 2 m 2 nd f m
31 elmapi f 2 f : 2
32 31 3ad2ant2 w + f 2 A ran . f y = sum^ vol . f f : 2
33 simp3l w + f 2 A ran . f y = sum^ vol . f A ran . f
34 simp1 w + f 2 A ran . f y = sum^ vol . f w +
35 2fveq3 m = n 1 st f m = 1 st f n
36 oveq2 m = n 2 m = 2 n
37 36 oveq2d m = n w 2 m = w 2 n
38 35 37 oveq12d m = n 1 st f m w 2 m = 1 st f n w 2 n
39 2fveq3 m = n 2 nd f m = 2 nd f n
40 38 39 opeq12d m = n 1 st f m w 2 m 2 nd f m = 1 st f n w 2 n 2 nd f n
41 40 cbvmptv m 1 st f m w 2 m 2 nd f m = n 1 st f n w 2 n 2 nd f n
42 28 29 30 32 33 34 41 ovolval5lem2 w + f 2 A ran . f y = sum^ vol . f z Q z y + 𝑒 w
43 42 3exp w + f 2 A ran . f y = sum^ vol . f z Q z y + 𝑒 w
44 43 rexlimdv w + f 2 A ran . f y = sum^ vol . f z Q z y + 𝑒 w
45 44 imp w + f 2 A ran . f y = sum^ vol . f z Q z y + 𝑒 w
46 13 17 45 syl2anc y M w + z Q z y + 𝑒 w
47 46 3adant1 y M w + z Q z y + 𝑒 w
48 11 12 47 infleinf sup Q * < sup M * <
49 eqeq1 z = y z = sum^ vol . f y = sum^ vol . f
50 49 anbi2d z = y A ran . f z = sum^ vol . f A ran . f y = sum^ vol . f
51 50 rexbidv z = y f 2 A ran . f z = sum^ vol . f f 2 A ran . f y = sum^ vol . f
52 51 cbvrabv z * | f 2 A ran . f z = sum^ vol . f = y * | f 2 A ran . f y = sum^ vol . f
53 simpr f 2 A ran . f A ran . f
54 ioossico 1 st f n 2 nd f n 1 st f n 2 nd f n
55 54 a1i f 2 n 1 st f n 2 nd f n 1 st f n 2 nd f n
56 31 adantr f 2 n f : 2
57 simpr f 2 n n
58 56 57 fvovco f 2 n . f n = 1 st f n 2 nd f n
59 56 57 fvovco f 2 n . f n = 1 st f n 2 nd f n
60 58 59 sseq12d f 2 n . f n . f n 1 st f n 2 nd f n 1 st f n 2 nd f n
61 55 60 mpbird f 2 n . f n . f n
62 61 ralrimiva f 2 n . f n . f n
63 ss2iun n . f n . f n n . f n n . f n
64 62 63 syl f 2 n . f n n . f n
65 ioof . : * × * 𝒫
66 65 a1i f 2 . : * × * 𝒫
67 rexpssxrxp 2 * × *
68 67 a1i f 2 2 * × *
69 31 68 fssd f 2 f : * × *
70 fco . : * × * 𝒫 f : * × * . f : 𝒫
71 66 69 70 syl2anc f 2 . f : 𝒫
72 71 ffnd f 2 . f Fn
73 fniunfv . f Fn n . f n = ran . f
74 72 73 syl f 2 n . f n = ran . f
75 icof . : * × * 𝒫 *
76 75 a1i f 2 . : * × * 𝒫 *
77 fco . : * × * 𝒫 * f : * × * . f : 𝒫 *
78 76 69 77 syl2anc f 2 . f : 𝒫 *
79 78 ffnd f 2 . f Fn
80 fniunfv . f Fn n . f n = ran . f
81 79 80 syl f 2 n . f n = ran . f
82 74 81 sseq12d f 2 n . f n n . f n ran . f ran . f
83 64 82 mpbid f 2 ran . f ran . f
84 83 adantr f 2 A ran . f ran . f ran . f
85 53 84 sstrd f 2 A ran . f A ran . f
86 85 adantrr f 2 A ran . f y = sum^ vol . f A ran . f
87 simpr f 2 y = sum^ vol . f y = sum^ vol . f
88 31 voliooicof f 2 vol . f = vol . f
89 88 fveq2d f 2 sum^ vol . f = sum^ vol . f
90 89 adantr f 2 y = sum^ vol . f sum^ vol . f = sum^ vol . f
91 87 90 eqtrd f 2 y = sum^ vol . f y = sum^ vol . f
92 91 adantrl f 2 A ran . f y = sum^ vol . f y = sum^ vol . f
93 86 92 jca f 2 A ran . f y = sum^ vol . f A ran . f y = sum^ vol . f
94 93 ex f 2 A ran . f y = sum^ vol . f A ran . f y = sum^ vol . f
95 94 reximia f 2 A ran . f y = sum^ vol . f f 2 A ran . f y = sum^ vol . f
96 95 rgenw y * f 2 A ran . f y = sum^ vol . f f 2 A ran . f y = sum^ vol . f
97 ss2rab y * | f 2 A ran . f y = sum^ vol . f y * | f 2 A ran . f y = sum^ vol . f y * f 2 A ran . f y = sum^ vol . f f 2 A ran . f y = sum^ vol . f
98 96 97 mpbir y * | f 2 A ran . f y = sum^ vol . f y * | f 2 A ran . f y = sum^ vol . f
99 52 98 eqsstri z * | f 2 A ran . f z = sum^ vol . f y * | f 2 A ran . f y = sum^ vol . f
100 2 1 sseq12i Q M z * | f 2 A ran . f z = sum^ vol . f y * | f 2 A ran . f y = sum^ vol . f
101 99 100 mpbir Q M
102 infxrss Q M M * sup M * < sup Q * <
103 101 8 102 mp2an sup M * < sup Q * <
104 103 a1i sup M * < sup Q * <
105 6 10 48 104 xrletrid sup Q * < = sup M * <
106 105 mptru sup Q * < = sup M * <