Metamath Proof Explorer


Theorem ovolval5lem3

Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval5lem3.m M = y * | f 2 A ran . f y = sum^ vol . f
ovolval5lem3.q Q = z * | f 2 A ran . f z = sum^ vol . f
Assertion ovolval5lem3 inf Q * < = inf M * <

Proof

Step Hyp Ref Expression
1 ovolval5lem3.m M = y * | f 2 A ran . f y = sum^ vol . f
2 ovolval5lem3.q Q = z * | f 2 A ran . f z = sum^ vol . f
3 2 ssrab3 Q *
4 infxrcl Q * inf Q * < *
5 3 4 mp1i inf Q * < *
6 1 ssrab3 M *
7 infxrcl M * inf M * < *
8 6 7 mp1i inf M * < *
9 3 a1i Q *
10 6 a1i M *
11 1 reqabi y M y * f 2 A ran . f y = sum^ vol . f
12 11 simprbi y M f 2 A ran . f y = sum^ vol . f
13 coeq2 g = f . g = . f
14 13 rneqd g = f ran . g = ran . f
15 14 unieqd g = f ran . g = ran . f
16 15 sseq2d g = f A ran . g A ran . f
17 coeq2 g = f vol . g = vol . f
18 17 fveq2d g = f sum^ vol . g = sum^ vol . f
19 18 eqeq2d g = f z = sum^ vol . g z = sum^ vol . f
20 16 19 anbi12d g = f A ran . g z = sum^ vol . g A ran . f z = sum^ vol . f
21 20 cbvrexvw g 2 A ran . g z = sum^ vol . g f 2 A ran . f z = sum^ vol . f
22 21 rabbii z * | g 2 A ran . g z = sum^ vol . g = z * | f 2 A ran . f z = sum^ vol . f
23 2 22 eqtr4i Q = z * | g 2 A ran . g z = sum^ vol . g
24 simp3r w + f 2 A ran . f y = sum^ vol . f y = sum^ vol . f
25 eqid sum^ vol . m 1 st f m w 2 m 2 nd f m = sum^ vol . m 1 st f m w 2 m 2 nd f m
26 elmapi f 2 f : 2
27 26 3ad2ant2 w + f 2 A ran . f y = sum^ vol . f f : 2
28 simp3l w + f 2 A ran . f y = sum^ vol . f A ran . f
29 simp1 w + f 2 A ran . f y = sum^ vol . f w +
30 2fveq3 m = n 1 st f m = 1 st f n
31 oveq2 m = n 2 m = 2 n
32 31 oveq2d m = n w 2 m = w 2 n
33 30 32 oveq12d m = n 1 st f m w 2 m = 1 st f n w 2 n
34 2fveq3 m = n 2 nd f m = 2 nd f n
35 33 34 opeq12d m = n 1 st f m w 2 m 2 nd f m = 1 st f n w 2 n 2 nd f n
36 35 cbvmptv m 1 st f m w 2 m 2 nd f m = n 1 st f n w 2 n 2 nd f n
37 23 24 25 27 28 29 36 ovolval5lem2 w + f 2 A ran . f y = sum^ vol . f z Q z y + 𝑒 w
38 37 rexlimdv3a w + f 2 A ran . f y = sum^ vol . f z Q z y + 𝑒 w
39 12 38 mpan9 y M w + z Q z y + 𝑒 w
40 39 3adant1 y M w + z Q z y + 𝑒 w
41 9 10 40 infleinf inf Q * < inf M * <
42 eqeq1 z = y z = sum^ vol . f y = sum^ vol . f
43 42 anbi2d z = y A ran . f z = sum^ vol . f A ran . f y = sum^ vol . f
44 43 rexbidv z = y f 2 A ran . f z = sum^ vol . f f 2 A ran . f y = sum^ vol . f
45 44 cbvrabv z * | f 2 A ran . f z = sum^ vol . f = y * | f 2 A ran . f y = sum^ vol . f
46 simpr f 2 A ran . f A ran . f
47 ioossico 1 st f n 2 nd f n 1 st f n 2 nd f n
48 47 a1i f 2 n 1 st f n 2 nd f n 1 st f n 2 nd f n
49 26 adantr f 2 n f : 2
50 simpr f 2 n n
51 49 50 fvovco f 2 n . f n = 1 st f n 2 nd f n
52 49 50 fvovco f 2 n . f n = 1 st f n 2 nd f n
53 48 51 52 3sstr4d f 2 n . f n . f n
54 53 ralrimiva f 2 n . f n . f n
55 ss2iun n . f n . f n n . f n n . f n
56 54 55 syl f 2 n . f n n . f n
57 ioof . : * × * 𝒫
58 57 a1i f 2 . : * × * 𝒫
59 rexpssxrxp 2 * × *
60 59 a1i f 2 2 * × *
61 58 60 26 fcoss f 2 . f : 𝒫
62 61 ffnd f 2 . f Fn
63 fniunfv . f Fn n . f n = ran . f
64 62 63 syl f 2 n . f n = ran . f
65 icof . : * × * 𝒫 *
66 65 a1i f 2 . : * × * 𝒫 *
67 66 60 26 fcoss f 2 . f : 𝒫 *
68 67 ffnd f 2 . f Fn
69 fniunfv . f Fn n . f n = ran . f
70 68 69 syl f 2 n . f n = ran . f
71 56 64 70 3sstr3d f 2 ran . f ran . f
72 71 adantr f 2 A ran . f ran . f ran . f
73 46 72 sstrd f 2 A ran . f A ran . f
74 simpr f 2 y = sum^ vol . f y = sum^ vol . f
75 26 voliooicof f 2 vol . f = vol . f
76 75 fveq2d f 2 sum^ vol . f = sum^ vol . f
77 76 adantr f 2 y = sum^ vol . f sum^ vol . f = sum^ vol . f
78 74 77 eqtrd f 2 y = sum^ vol . f y = sum^ vol . f
79 73 78 anim12dan f 2 A ran . f y = sum^ vol . f A ran . f y = sum^ vol . f
80 79 ex f 2 A ran . f y = sum^ vol . f A ran . f y = sum^ vol . f
81 80 reximia f 2 A ran . f y = sum^ vol . f f 2 A ran . f y = sum^ vol . f
82 81 a1i y * f 2 A ran . f y = sum^ vol . f f 2 A ran . f y = sum^ vol . f
83 82 ss2rabi y * | f 2 A ran . f y = sum^ vol . f y * | f 2 A ran . f y = sum^ vol . f
84 45 83 eqsstri z * | f 2 A ran . f z = sum^ vol . f y * | f 2 A ran . f y = sum^ vol . f
85 84 2 1 3sstr4i Q M
86 infxrss Q M M * inf M * < inf Q * <
87 85 6 86 mp2an inf M * < inf Q * <
88 87 a1i inf M * < inf Q * <
89 5 8 41 88 xrletrid inf Q * < = inf M * <
90 89 mptru inf Q * < = inf M * <