Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval5lem3.m |
|
2 |
|
ovolval5lem3.q |
|
3 |
2
|
ssrab3 |
|
4 |
|
infxrcl |
|
5 |
3 4
|
mp1i |
|
6 |
1
|
ssrab3 |
|
7 |
|
infxrcl |
|
8 |
6 7
|
mp1i |
|
9 |
3
|
a1i |
|
10 |
6
|
a1i |
|
11 |
1
|
reqabi |
|
12 |
11
|
simprbi |
|
13 |
|
coeq2 |
|
14 |
13
|
rneqd |
|
15 |
14
|
unieqd |
|
16 |
15
|
sseq2d |
|
17 |
|
coeq2 |
|
18 |
17
|
fveq2d |
|
19 |
18
|
eqeq2d |
|
20 |
16 19
|
anbi12d |
|
21 |
20
|
cbvrexvw |
|
22 |
21
|
rabbii |
|
23 |
2 22
|
eqtr4i |
|
24 |
|
simp3r |
|
25 |
|
eqid |
|
26 |
|
elmapi |
|
27 |
26
|
3ad2ant2 |
|
28 |
|
simp3l |
|
29 |
|
simp1 |
|
30 |
|
2fveq3 |
|
31 |
|
oveq2 |
|
32 |
31
|
oveq2d |
|
33 |
30 32
|
oveq12d |
|
34 |
|
2fveq3 |
|
35 |
33 34
|
opeq12d |
|
36 |
35
|
cbvmptv |
|
37 |
23 24 25 27 28 29 36
|
ovolval5lem2 |
|
38 |
37
|
rexlimdv3a |
|
39 |
12 38
|
mpan9 |
|
40 |
39
|
3adant1 |
|
41 |
9 10 40
|
infleinf |
|
42 |
|
eqeq1 |
|
43 |
42
|
anbi2d |
|
44 |
43
|
rexbidv |
|
45 |
44
|
cbvrabv |
|
46 |
|
simpr |
|
47 |
|
ioossico |
|
48 |
47
|
a1i |
|
49 |
26
|
adantr |
|
50 |
|
simpr |
|
51 |
49 50
|
fvovco |
|
52 |
49 50
|
fvovco |
|
53 |
48 51 52
|
3sstr4d |
|
54 |
53
|
ralrimiva |
|
55 |
|
ss2iun |
|
56 |
54 55
|
syl |
|
57 |
|
ioof |
|
58 |
57
|
a1i |
|
59 |
|
rexpssxrxp |
|
60 |
59
|
a1i |
|
61 |
58 60 26
|
fcoss |
|
62 |
61
|
ffnd |
|
63 |
|
fniunfv |
|
64 |
62 63
|
syl |
|
65 |
|
icof |
|
66 |
65
|
a1i |
|
67 |
66 60 26
|
fcoss |
|
68 |
67
|
ffnd |
|
69 |
|
fniunfv |
|
70 |
68 69
|
syl |
|
71 |
56 64 70
|
3sstr3d |
|
72 |
71
|
adantr |
|
73 |
46 72
|
sstrd |
|
74 |
|
simpr |
|
75 |
26
|
voliooicof |
|
76 |
75
|
fveq2d |
|
77 |
76
|
adantr |
|
78 |
74 77
|
eqtrd |
|
79 |
73 78
|
anim12dan |
|
80 |
79
|
ex |
|
81 |
80
|
reximia |
|
82 |
81
|
a1i |
|
83 |
82
|
ss2rabi |
|
84 |
45 83
|
eqsstri |
|
85 |
84 2 1
|
3sstr4i |
|
86 |
|
infxrss |
|
87 |
85 6 86
|
mp2an |
|
88 |
87
|
a1i |
|
89 |
5 8 41 88
|
xrletrid |
|
90 |
89
|
mptru |
|