Metamath Proof Explorer


Theorem ovolval5lem2

Description: |- ( ( ph /\ n e. NN ) -> <. ( ( 1st( Fn ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd( Fn ) ) >. e. ( RR X. RR ) ) . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval5lem2.q Q = z * | f 2 A ran . f z = sum^ vol . f
ovolval5lem2.y φ Y = sum^ vol . F
ovolval5lem2.z Z = sum^ vol . G
ovolval5lem2.f φ F : 2
ovolval5lem2.s φ A ran . F
ovolval5lem2.w φ W +
ovolval5lem2.g G = n 1 st F n W 2 n 2 nd F n
Assertion ovolval5lem2 φ z Q z Y + 𝑒 W

Proof

Step Hyp Ref Expression
1 ovolval5lem2.q Q = z * | f 2 A ran . f z = sum^ vol . f
2 ovolval5lem2.y φ Y = sum^ vol . F
3 ovolval5lem2.z Z = sum^ vol . G
4 ovolval5lem2.f φ F : 2
5 ovolval5lem2.s φ A ran . F
6 ovolval5lem2.w φ W +
7 ovolval5lem2.g G = n 1 st F n W 2 n 2 nd F n
8 3 a1i φ Z = sum^ vol . G
9 nnex V
10 9 a1i φ V
11 volioof vol . : * × * 0 +∞
12 11 a1i φ vol . : * × * 0 +∞
13 rexpssxrxp 2 * × *
14 13 a1i φ 2 * × *
15 4 ffvelrnda φ n F n 2
16 xp1st F n 2 1 st F n
17 15 16 syl φ n 1 st F n
18 6 rpred φ W
19 18 adantr φ n W
20 2nn 2
21 20 a1i n 2
22 nnnn0 n n 0
23 21 22 nnexpcld n 2 n
24 23 nnred n 2 n
25 24 adantl φ n 2 n
26 23 nnne0d n 2 n 0
27 26 adantl φ n 2 n 0
28 19 25 27 redivcld φ n W 2 n
29 17 28 resubcld φ n 1 st F n W 2 n
30 xp2nd F n 2 2 nd F n
31 15 30 syl φ n 2 nd F n
32 29 31 opelxpd φ n 1 st F n W 2 n 2 nd F n 2
33 32 7 fmptd φ G : 2
34 12 14 33 fcoss φ vol . G : 0 +∞
35 10 34 sge0xrcl φ sum^ vol . G *
36 8 35 eqeltrd φ Z *
37 reex V
38 37 37 xpex 2 V
39 38 a1i φ 2 V
40 39 10 elmapd φ G 2 G : 2
41 33 40 mpbird φ G 2
42 33 ffvelrnda φ n G n 2
43 xp1st G n 2 1 st G n
44 42 43 syl φ n 1 st G n
45 44 rexrd φ n 1 st G n *
46 xp2nd G n 2 2 nd G n
47 42 46 syl φ n 2 nd G n
48 47 rexrd φ n 2 nd G n *
49 6 adantr φ n W +
50 23 nnrpd n 2 n +
51 50 adantl φ n 2 n +
52 49 51 rpdivcld φ n W 2 n +
53 17 52 ltsubrpd φ n 1 st F n W 2 n < 1 st F n
54 id n n
55 opex 1 st F n W 2 n 2 nd F n V
56 55 a1i n 1 st F n W 2 n 2 nd F n V
57 7 fvmpt2 n 1 st F n W 2 n 2 nd F n V G n = 1 st F n W 2 n 2 nd F n
58 54 56 57 syl2anc n G n = 1 st F n W 2 n 2 nd F n
59 58 fveq2d n 1 st G n = 1 st 1 st F n W 2 n 2 nd F n
60 ovex 1 st F n W 2 n V
61 fvex 2 nd F n V
62 op1stg 1 st F n W 2 n V 2 nd F n V 1 st 1 st F n W 2 n 2 nd F n = 1 st F n W 2 n
63 60 61 62 mp2an 1 st 1 st F n W 2 n 2 nd F n = 1 st F n W 2 n
64 63 a1i n 1 st 1 st F n W 2 n 2 nd F n = 1 st F n W 2 n
65 59 64 eqtrd n 1 st G n = 1 st F n W 2 n
66 65 adantl φ n 1 st G n = 1 st F n W 2 n
67 66 breq1d φ n 1 st G n < 1 st F n 1 st F n W 2 n < 1 st F n
68 53 67 mpbird φ n 1 st G n < 1 st F n
69 58 fveq2d n 2 nd G n = 2 nd 1 st F n W 2 n 2 nd F n
70 60 61 op2nd 2 nd 1 st F n W 2 n 2 nd F n = 2 nd F n
71 70 a1i n 2 nd 1 st F n W 2 n 2 nd F n = 2 nd F n
72 69 71 eqtrd n 2 nd G n = 2 nd F n
73 72 adantl φ n 2 nd G n = 2 nd F n
74 73 eqcomd φ n 2 nd F n = 2 nd G n
75 31 74 eqled φ n 2 nd F n 2 nd G n
76 icossioo 1 st G n * 2 nd G n * 1 st G n < 1 st F n 2 nd F n 2 nd G n 1 st F n 2 nd F n 1 st G n 2 nd G n
77 45 48 68 75 76 syl22anc φ n 1 st F n 2 nd F n 1 st G n 2 nd G n
78 1st2nd2 F n 2 F n = 1 st F n 2 nd F n
79 15 78 syl φ n F n = 1 st F n 2 nd F n
80 79 fveq2d φ n . F n = . 1 st F n 2 nd F n
81 df-ov 1 st F n 2 nd F n = . 1 st F n 2 nd F n
82 81 a1i φ n 1 st F n 2 nd F n = . 1 st F n 2 nd F n
83 80 82 eqtr4d φ n . F n = 1 st F n 2 nd F n
84 1st2nd2 G n 2 G n = 1 st G n 2 nd G n
85 42 84 syl φ n G n = 1 st G n 2 nd G n
86 85 fveq2d φ n . G n = . 1 st G n 2 nd G n
87 df-ov 1 st G n 2 nd G n = . 1 st G n 2 nd G n
88 87 a1i φ n 1 st G n 2 nd G n = . 1 st G n 2 nd G n
89 86 88 eqtr4d φ n . G n = 1 st G n 2 nd G n
90 83 89 sseq12d φ n . F n . G n 1 st F n 2 nd F n 1 st G n 2 nd G n
91 77 90 mpbird φ n . F n . G n
92 91 ralrimiva φ n . F n . G n
93 ss2iun n . F n . G n n . F n n . G n
94 92 93 syl φ n . F n n . G n
95 fvex . F n V
96 95 rgenw n . F n V
97 96 a1i φ n . F n V
98 dfiun3g n . F n V n . F n = ran n . F n
99 97 98 syl φ n . F n = ran n . F n
100 icof . : * × * 𝒫 *
101 100 a1i φ . : * × * 𝒫 *
102 4 14 101 fcomptss φ . F = n . F n
103 102 eqcomd φ n . F n = . F
104 103 rneqd φ ran n . F n = ran . F
105 104 unieqd φ ran n . F n = ran . F
106 99 105 eqtr2d φ ran . F = n . F n
107 fvex . G n V
108 107 rgenw n . G n V
109 108 a1i φ n . G n V
110 dfiun3g n . G n V n . G n = ran n . G n
111 109 110 syl φ n . G n = ran n . G n
112 ioof . : * × * 𝒫
113 112 a1i φ . : * × * 𝒫
114 33 14 113 fcomptss φ . G = n . G n
115 114 eqcomd φ n . G n = . G
116 115 rneqd φ ran n . G n = ran . G
117 116 unieqd φ ran n . G n = ran . G
118 111 117 eqtr2d φ ran . G = n . G n
119 106 118 sseq12d φ ran . F ran . G n . F n n . G n
120 94 119 mpbird φ ran . F ran . G
121 5 120 sstrd φ A ran . G
122 121 8 jca φ A ran . G Z = sum^ vol . G
123 coeq2 f = G . f = . G
124 123 rneqd f = G ran . f = ran . G
125 124 unieqd f = G ran . f = ran . G
126 125 sseq2d f = G A ran . f A ran . G
127 coeq2 f = G vol . f = vol . G
128 127 fveq2d f = G sum^ vol . f = sum^ vol . G
129 128 eqeq2d f = G Z = sum^ vol . f Z = sum^ vol . G
130 126 129 anbi12d f = G A ran . f Z = sum^ vol . f A ran . G Z = sum^ vol . G
131 130 rspcev G 2 A ran . G Z = sum^ vol . G f 2 A ran . f Z = sum^ vol . f
132 41 122 131 syl2anc φ f 2 A ran . f Z = sum^ vol . f
133 36 132 jca φ Z * f 2 A ran . f Z = sum^ vol . f
134 eqeq1 z = Z z = sum^ vol . f Z = sum^ vol . f
135 134 anbi2d z = Z A ran . f z = sum^ vol . f A ran . f Z = sum^ vol . f
136 135 rexbidv z = Z f 2 A ran . f z = sum^ vol . f f 2 A ran . f Z = sum^ vol . f
137 136 1 elrab2 Z Q Z * f 2 A ran . f Z = sum^ vol . f
138 133 137 sylibr φ Z Q
139 2fveq3 m = n 1 st F m = 1 st F n
140 2fveq3 m = n 2 nd F m = 2 nd F n
141 139 140 breq12d m = n 1 st F m < 2 nd F m 1 st F n < 2 nd F n
142 141 cbvrabv m | 1 st F m < 2 nd F m = n | 1 st F n < 2 nd F n
143 17 31 6 142 ovolval5lem1 φ sum^ n vol 1 st F n W 2 n 2 nd F n sum^ n vol 1 st F n 2 nd F n + 𝑒 W
144 nfcv _ n G
145 33 14 fssd φ G : * × *
146 144 145 volioofmpt φ vol . G = n vol 1 st G n 2 nd G n
147 66 73 oveq12d φ n 1 st G n 2 nd G n = 1 st F n W 2 n 2 nd F n
148 147 fveq2d φ n vol 1 st G n 2 nd G n = vol 1 st F n W 2 n 2 nd F n
149 148 mpteq2dva φ n vol 1 st G n 2 nd G n = n vol 1 st F n W 2 n 2 nd F n
150 146 149 eqtrd φ vol . G = n vol 1 st F n W 2 n 2 nd F n
151 150 fveq2d φ sum^ vol . G = sum^ n vol 1 st F n W 2 n 2 nd F n
152 8 151 eqtrd φ Z = sum^ n vol 1 st F n W 2 n 2 nd F n
153 nfcv _ n F
154 ressxr *
155 xpss2 * 2 × *
156 154 155 ax-mp 2 × *
157 156 a1i φ 2 × *
158 4 157 fssd φ F : × *
159 153 158 volicofmpt φ vol . F = n vol 1 st F n 2 nd F n
160 159 fveq2d φ sum^ vol . F = sum^ n vol 1 st F n 2 nd F n
161 2 160 eqtrd φ Y = sum^ n vol 1 st F n 2 nd F n
162 161 oveq1d φ Y + 𝑒 W = sum^ n vol 1 st F n 2 nd F n + 𝑒 W
163 152 162 breq12d φ Z Y + 𝑒 W sum^ n vol 1 st F n W 2 n 2 nd F n sum^ n vol 1 st F n 2 nd F n + 𝑒 W
164 143 163 mpbird φ Z Y + 𝑒 W
165 breq1 z = Z z Y + 𝑒 W Z Y + 𝑒 W
166 165 rspcev Z Q Z Y + 𝑒 W z Q z Y + 𝑒 W
167 138 164 166 syl2anc φ z Q z Y + 𝑒 W