| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolval5lem2.q |  |-  Q = { z e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } | 
						
							| 2 |  | ovolval5lem2.y |  |-  ( ph -> Y = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) | 
						
							| 3 |  | ovolval5lem2.z |  |-  Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) | 
						
							| 4 |  | ovolval5lem2.f |  |-  ( ph -> F : NN --> ( RR X. RR ) ) | 
						
							| 5 |  | ovolval5lem2.s |  |-  ( ph -> A C_ U. ran ( [,) o. F ) ) | 
						
							| 6 |  | ovolval5lem2.w |  |-  ( ph -> W e. RR+ ) | 
						
							| 7 |  | ovolval5lem2.g |  |-  G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 8 | 3 | a1i |  |-  ( ph -> Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) | 
						
							| 9 |  | nnex |  |-  NN e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 11 |  | volioof |  |-  ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) | 
						
							| 13 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) | 
						
							| 15 | 4 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. ( RR X. RR ) ) | 
						
							| 16 |  | xp1st |  |-  ( ( F ` n ) e. ( RR X. RR ) -> ( 1st ` ( F ` n ) ) e. RR ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) | 
						
							| 18 | 6 | rpred |  |-  ( ph -> W e. RR ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ n e. NN ) -> W e. RR ) | 
						
							| 20 |  | 2nn |  |-  2 e. NN | 
						
							| 21 | 20 | a1i |  |-  ( n e. NN -> 2 e. NN ) | 
						
							| 22 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 23 | 21 22 | nnexpcld |  |-  ( n e. NN -> ( 2 ^ n ) e. NN ) | 
						
							| 24 | 23 | nnred |  |-  ( n e. NN -> ( 2 ^ n ) e. RR ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR ) | 
						
							| 26 | 23 | nnne0d |  |-  ( n e. NN -> ( 2 ^ n ) =/= 0 ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( 2 ^ n ) =/= 0 ) | 
						
							| 28 | 19 25 27 | redivcld |  |-  ( ( ph /\ n e. NN ) -> ( W / ( 2 ^ n ) ) e. RR ) | 
						
							| 29 | 17 28 | resubcld |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. RR ) | 
						
							| 30 |  | xp2nd |  |-  ( ( F ` n ) e. ( RR X. RR ) -> ( 2nd ` ( F ` n ) ) e. RR ) | 
						
							| 31 | 15 30 | syl |  |-  ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) | 
						
							| 32 | 29 31 | opelxpd |  |-  ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. ( RR X. RR ) ) | 
						
							| 33 | 32 7 | fmptd |  |-  ( ph -> G : NN --> ( RR X. RR ) ) | 
						
							| 34 | 12 14 33 | fcoss |  |-  ( ph -> ( ( vol o. (,) ) o. G ) : NN --> ( 0 [,] +oo ) ) | 
						
							| 35 | 10 34 | sge0xrcl |  |-  ( ph -> ( sum^ ` ( ( vol o. (,) ) o. G ) ) e. RR* ) | 
						
							| 36 | 8 35 | eqeltrd |  |-  ( ph -> Z e. RR* ) | 
						
							| 37 |  | reex |  |-  RR e. _V | 
						
							| 38 | 37 37 | xpex |  |-  ( RR X. RR ) e. _V | 
						
							| 39 | 38 | a1i |  |-  ( ph -> ( RR X. RR ) e. _V ) | 
						
							| 40 | 39 10 | elmapd |  |-  ( ph -> ( G e. ( ( RR X. RR ) ^m NN ) <-> G : NN --> ( RR X. RR ) ) ) | 
						
							| 41 | 33 40 | mpbird |  |-  ( ph -> G e. ( ( RR X. RR ) ^m NN ) ) | 
						
							| 42 | 33 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) e. ( RR X. RR ) ) | 
						
							| 43 |  | xp1st |  |-  ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR ) | 
						
							| 45 | 44 | rexrd |  |-  ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR* ) | 
						
							| 46 |  | xp2nd |  |-  ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) | 
						
							| 47 | 42 46 | syl |  |-  ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR ) | 
						
							| 48 | 47 | rexrd |  |-  ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR* ) | 
						
							| 49 | 6 | adantr |  |-  ( ( ph /\ n e. NN ) -> W e. RR+ ) | 
						
							| 50 | 23 | nnrpd |  |-  ( n e. NN -> ( 2 ^ n ) e. RR+ ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR+ ) | 
						
							| 52 | 49 51 | rpdivcld |  |-  ( ( ph /\ n e. NN ) -> ( W / ( 2 ^ n ) ) e. RR+ ) | 
						
							| 53 | 17 52 | ltsubrpd |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) < ( 1st ` ( F ` n ) ) ) | 
						
							| 54 |  | id |  |-  ( n e. NN -> n e. NN ) | 
						
							| 55 |  | opex |  |-  <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V | 
						
							| 56 | 55 | a1i |  |-  ( n e. NN -> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V ) | 
						
							| 57 | 7 | fvmpt2 |  |-  ( ( n e. NN /\ <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V ) -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 58 | 54 56 57 | syl2anc |  |-  ( n e. NN -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 59 | 58 | fveq2d |  |-  ( n e. NN -> ( 1st ` ( G ` n ) ) = ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) ) | 
						
							| 60 |  | ovex |  |-  ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. _V | 
						
							| 61 |  | fvex |  |-  ( 2nd ` ( F ` n ) ) e. _V | 
						
							| 62 |  | op1stg |  |-  ( ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. _V /\ ( 2nd ` ( F ` n ) ) e. _V ) -> ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) | 
						
							| 63 | 60 61 62 | mp2an |  |-  ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) | 
						
							| 64 | 63 | a1i |  |-  ( n e. NN -> ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) | 
						
							| 65 | 59 64 | eqtrd |  |-  ( n e. NN -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) | 
						
							| 67 | 66 | breq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) < ( 1st ` ( F ` n ) ) ) ) | 
						
							| 68 | 53 67 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) ) | 
						
							| 69 | 58 | fveq2d |  |-  ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) ) | 
						
							| 70 | 60 61 | op2nd |  |-  ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( 2nd ` ( F ` n ) ) | 
						
							| 71 | 70 | a1i |  |-  ( n e. NN -> ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( 2nd ` ( F ` n ) ) ) | 
						
							| 72 | 69 71 | eqtrd |  |-  ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( F ` n ) ) ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( F ` n ) ) ) | 
						
							| 74 | 73 | eqcomd |  |-  ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) = ( 2nd ` ( G ` n ) ) ) | 
						
							| 75 | 31 74 | eqled |  |-  ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) <_ ( 2nd ` ( G ` n ) ) ) | 
						
							| 76 |  | icossioo |  |-  ( ( ( ( 1st ` ( G ` n ) ) e. RR* /\ ( 2nd ` ( G ` n ) ) e. RR* ) /\ ( ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) /\ ( 2nd ` ( F ` n ) ) <_ ( 2nd ` ( G ` n ) ) ) ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 77 | 45 48 68 75 76 | syl22anc |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 78 |  | 1st2nd2 |  |-  ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 79 | 15 78 | syl |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 80 | 79 | fveq2d |  |-  ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) | 
						
							| 81 |  | df-ov |  |-  ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) | 
						
							| 82 | 81 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) | 
						
							| 83 | 80 82 | eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 84 |  | 1st2nd2 |  |-  ( ( G ` n ) e. ( RR X. RR ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) | 
						
							| 85 | 42 84 | syl |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) | 
						
							| 86 | 85 | fveq2d |  |-  ( ( ph /\ n e. NN ) -> ( (,) ` ( G ` n ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) ) | 
						
							| 87 |  | df-ov |  |-  ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) | 
						
							| 88 | 87 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) ) | 
						
							| 89 | 86 88 | eqtr4d |  |-  ( ( ph /\ n e. NN ) -> ( (,) ` ( G ` n ) ) = ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 90 | 83 89 | sseq12d |  |-  ( ( ph /\ n e. NN ) -> ( ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) <-> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) | 
						
							| 91 | 77 90 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) ) | 
						
							| 92 | 91 | ralrimiva |  |-  ( ph -> A. n e. NN ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) ) | 
						
							| 93 |  | ss2iun |  |-  ( A. n e. NN ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) -> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) | 
						
							| 94 | 92 93 | syl |  |-  ( ph -> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) | 
						
							| 95 |  | fvex |  |-  ( [,) ` ( F ` n ) ) e. _V | 
						
							| 96 | 95 | rgenw |  |-  A. n e. NN ( [,) ` ( F ` n ) ) e. _V | 
						
							| 97 | 96 | a1i |  |-  ( ph -> A. n e. NN ( [,) ` ( F ` n ) ) e. _V ) | 
						
							| 98 |  | dfiun3g |  |-  ( A. n e. NN ( [,) ` ( F ` n ) ) e. _V -> U_ n e. NN ( [,) ` ( F ` n ) ) = U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) | 
						
							| 99 | 97 98 | syl |  |-  ( ph -> U_ n e. NN ( [,) ` ( F ` n ) ) = U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) | 
						
							| 100 |  | icof |  |-  [,) : ( RR* X. RR* ) --> ~P RR* | 
						
							| 101 | 100 | a1i |  |-  ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) | 
						
							| 102 | 4 14 101 | fcomptss |  |-  ( ph -> ( [,) o. F ) = ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) | 
						
							| 103 | 102 | eqcomd |  |-  ( ph -> ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = ( [,) o. F ) ) | 
						
							| 104 | 103 | rneqd |  |-  ( ph -> ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = ran ( [,) o. F ) ) | 
						
							| 105 | 104 | unieqd |  |-  ( ph -> U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = U. ran ( [,) o. F ) ) | 
						
							| 106 | 99 105 | eqtr2d |  |-  ( ph -> U. ran ( [,) o. F ) = U_ n e. NN ( [,) ` ( F ` n ) ) ) | 
						
							| 107 |  | fvex |  |-  ( (,) ` ( G ` n ) ) e. _V | 
						
							| 108 | 107 | rgenw |  |-  A. n e. NN ( (,) ` ( G ` n ) ) e. _V | 
						
							| 109 | 108 | a1i |  |-  ( ph -> A. n e. NN ( (,) ` ( G ` n ) ) e. _V ) | 
						
							| 110 |  | dfiun3g |  |-  ( A. n e. NN ( (,) ` ( G ` n ) ) e. _V -> U_ n e. NN ( (,) ` ( G ` n ) ) = U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) | 
						
							| 111 | 109 110 | syl |  |-  ( ph -> U_ n e. NN ( (,) ` ( G ` n ) ) = U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) | 
						
							| 112 |  | ioof |  |-  (,) : ( RR* X. RR* ) --> ~P RR | 
						
							| 113 | 112 | a1i |  |-  ( ph -> (,) : ( RR* X. RR* ) --> ~P RR ) | 
						
							| 114 | 33 14 113 | fcomptss |  |-  ( ph -> ( (,) o. G ) = ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) | 
						
							| 115 | 114 | eqcomd |  |-  ( ph -> ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = ( (,) o. G ) ) | 
						
							| 116 | 115 | rneqd |  |-  ( ph -> ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = ran ( (,) o. G ) ) | 
						
							| 117 | 116 | unieqd |  |-  ( ph -> U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = U. ran ( (,) o. G ) ) | 
						
							| 118 | 111 117 | eqtr2d |  |-  ( ph -> U. ran ( (,) o. G ) = U_ n e. NN ( (,) ` ( G ` n ) ) ) | 
						
							| 119 | 106 118 | sseq12d |  |-  ( ph -> ( U. ran ( [,) o. F ) C_ U. ran ( (,) o. G ) <-> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) ) | 
						
							| 120 | 94 119 | mpbird |  |-  ( ph -> U. ran ( [,) o. F ) C_ U. ran ( (,) o. G ) ) | 
						
							| 121 | 5 120 | sstrd |  |-  ( ph -> A C_ U. ran ( (,) o. G ) ) | 
						
							| 122 | 121 8 | jca |  |-  ( ph -> ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) | 
						
							| 123 |  | coeq2 |  |-  ( f = G -> ( (,) o. f ) = ( (,) o. G ) ) | 
						
							| 124 | 123 | rneqd |  |-  ( f = G -> ran ( (,) o. f ) = ran ( (,) o. G ) ) | 
						
							| 125 | 124 | unieqd |  |-  ( f = G -> U. ran ( (,) o. f ) = U. ran ( (,) o. G ) ) | 
						
							| 126 | 125 | sseq2d |  |-  ( f = G -> ( A C_ U. ran ( (,) o. f ) <-> A C_ U. ran ( (,) o. G ) ) ) | 
						
							| 127 |  | coeq2 |  |-  ( f = G -> ( ( vol o. (,) ) o. f ) = ( ( vol o. (,) ) o. G ) ) | 
						
							| 128 | 127 | fveq2d |  |-  ( f = G -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) | 
						
							| 129 | 128 | eqeq2d |  |-  ( f = G -> ( Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) | 
						
							| 130 | 126 129 | anbi12d |  |-  ( f = G -> ( ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) ) | 
						
							| 131 | 130 | rspcev |  |-  ( ( G e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) | 
						
							| 132 | 41 122 131 | syl2anc |  |-  ( ph -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) | 
						
							| 133 | 36 132 | jca |  |-  ( ph -> ( Z e. RR* /\ E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) | 
						
							| 134 |  | eqeq1 |  |-  ( z = Z -> ( z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) | 
						
							| 135 | 134 | anbi2d |  |-  ( z = Z -> ( ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) | 
						
							| 136 | 135 | rexbidv |  |-  ( z = Z -> ( E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) | 
						
							| 137 | 136 1 | elrab2 |  |-  ( Z e. Q <-> ( Z e. RR* /\ E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) | 
						
							| 138 | 133 137 | sylibr |  |-  ( ph -> Z e. Q ) | 
						
							| 139 |  | 2fveq3 |  |-  ( m = n -> ( 1st ` ( F ` m ) ) = ( 1st ` ( F ` n ) ) ) | 
						
							| 140 |  | 2fveq3 |  |-  ( m = n -> ( 2nd ` ( F ` m ) ) = ( 2nd ` ( F ` n ) ) ) | 
						
							| 141 | 139 140 | breq12d |  |-  ( m = n -> ( ( 1st ` ( F ` m ) ) < ( 2nd ` ( F ` m ) ) <-> ( 1st ` ( F ` n ) ) < ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 142 | 141 | cbvrabv |  |-  { m e. NN | ( 1st ` ( F ` m ) ) < ( 2nd ` ( F ` m ) ) } = { n e. NN | ( 1st ` ( F ` n ) ) < ( 2nd ` ( F ` n ) ) } | 
						
							| 143 | 17 31 6 142 | ovolval5lem1 |  |-  ( ph -> ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) <_ ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) | 
						
							| 144 |  | nfcv |  |-  F/_ n G | 
						
							| 145 | 33 14 | fssd |  |-  ( ph -> G : NN --> ( RR* X. RR* ) ) | 
						
							| 146 | 144 145 | volioofmpt |  |-  ( ph -> ( ( vol o. (,) ) o. G ) = ( n e. NN |-> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) ) | 
						
							| 147 | 66 73 | oveq12d |  |-  ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) | 
						
							| 148 | 147 | fveq2d |  |-  ( ( ph /\ n e. NN ) -> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) = ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) | 
						
							| 149 | 148 | mpteq2dva |  |-  ( ph -> ( n e. NN |-> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) = ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) | 
						
							| 150 | 146 149 | eqtrd |  |-  ( ph -> ( ( vol o. (,) ) o. G ) = ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) | 
						
							| 151 | 150 | fveq2d |  |-  ( ph -> ( sum^ ` ( ( vol o. (,) ) o. G ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) | 
						
							| 152 | 8 151 | eqtrd |  |-  ( ph -> Z = ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) | 
						
							| 153 |  | nfcv |  |-  F/_ n F | 
						
							| 154 |  | ressxr |  |-  RR C_ RR* | 
						
							| 155 |  | xpss2 |  |-  ( RR C_ RR* -> ( RR X. RR ) C_ ( RR X. RR* ) ) | 
						
							| 156 | 154 155 | ax-mp |  |-  ( RR X. RR ) C_ ( RR X. RR* ) | 
						
							| 157 | 156 | a1i |  |-  ( ph -> ( RR X. RR ) C_ ( RR X. RR* ) ) | 
						
							| 158 | 4 157 | fssd |  |-  ( ph -> F : NN --> ( RR X. RR* ) ) | 
						
							| 159 | 153 158 | volicofmpt |  |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) | 
						
							| 160 | 159 | fveq2d |  |-  ( ph -> ( sum^ ` ( ( vol o. [,) ) o. F ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) | 
						
							| 161 | 2 160 | eqtrd |  |-  ( ph -> Y = ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) | 
						
							| 162 | 161 | oveq1d |  |-  ( ph -> ( Y +e W ) = ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) | 
						
							| 163 | 152 162 | breq12d |  |-  ( ph -> ( Z <_ ( Y +e W ) <-> ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) <_ ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) ) | 
						
							| 164 | 143 163 | mpbird |  |-  ( ph -> Z <_ ( Y +e W ) ) | 
						
							| 165 |  | breq1 |  |-  ( z = Z -> ( z <_ ( Y +e W ) <-> Z <_ ( Y +e W ) ) ) | 
						
							| 166 | 165 | rspcev |  |-  ( ( Z e. Q /\ Z <_ ( Y +e W ) ) -> E. z e. Q z <_ ( Y +e W ) ) | 
						
							| 167 | 138 164 166 | syl2anc |  |-  ( ph -> E. z e. Q z <_ ( Y +e W ) ) |