| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolval5lem2.q |
|- Q = { z e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } |
| 2 |
|
ovolval5lem2.y |
|- ( ph -> Y = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) |
| 3 |
|
ovolval5lem2.z |
|- Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) |
| 4 |
|
ovolval5lem2.f |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
| 5 |
|
ovolval5lem2.s |
|- ( ph -> A C_ U. ran ( [,) o. F ) ) |
| 6 |
|
ovolval5lem2.w |
|- ( ph -> W e. RR+ ) |
| 7 |
|
ovolval5lem2.g |
|- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 8 |
3
|
a1i |
|- ( ph -> Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
| 9 |
|
nnex |
|- NN e. _V |
| 10 |
9
|
a1i |
|- ( ph -> NN e. _V ) |
| 11 |
|
volioof |
|- ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) |
| 12 |
11
|
a1i |
|- ( ph -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) |
| 13 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 14 |
13
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) |
| 15 |
4
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ( RR X. RR ) ) |
| 16 |
|
xp1st |
|- ( ( F ` n ) e. ( RR X. RR ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 17 |
15 16
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 18 |
6
|
rpred |
|- ( ph -> W e. RR ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. RR ) |
| 20 |
|
2nn |
|- 2 e. NN |
| 21 |
20
|
a1i |
|- ( n e. NN -> 2 e. NN ) |
| 22 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 23 |
21 22
|
nnexpcld |
|- ( n e. NN -> ( 2 ^ n ) e. NN ) |
| 24 |
23
|
nnred |
|- ( n e. NN -> ( 2 ^ n ) e. RR ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR ) |
| 26 |
23
|
nnne0d |
|- ( n e. NN -> ( 2 ^ n ) =/= 0 ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) =/= 0 ) |
| 28 |
19 25 27
|
redivcld |
|- ( ( ph /\ n e. NN ) -> ( W / ( 2 ^ n ) ) e. RR ) |
| 29 |
17 28
|
resubcld |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. RR ) |
| 30 |
|
xp2nd |
|- ( ( F ` n ) e. ( RR X. RR ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 31 |
15 30
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 32 |
29 31
|
opelxpd |
|- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. ( RR X. RR ) ) |
| 33 |
32 7
|
fmptd |
|- ( ph -> G : NN --> ( RR X. RR ) ) |
| 34 |
12 14 33
|
fcoss |
|- ( ph -> ( ( vol o. (,) ) o. G ) : NN --> ( 0 [,] +oo ) ) |
| 35 |
10 34
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( ( vol o. (,) ) o. G ) ) e. RR* ) |
| 36 |
8 35
|
eqeltrd |
|- ( ph -> Z e. RR* ) |
| 37 |
|
reex |
|- RR e. _V |
| 38 |
37 37
|
xpex |
|- ( RR X. RR ) e. _V |
| 39 |
38
|
a1i |
|- ( ph -> ( RR X. RR ) e. _V ) |
| 40 |
39 10
|
elmapd |
|- ( ph -> ( G e. ( ( RR X. RR ) ^m NN ) <-> G : NN --> ( RR X. RR ) ) ) |
| 41 |
33 40
|
mpbird |
|- ( ph -> G e. ( ( RR X. RR ) ^m NN ) ) |
| 42 |
33
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ( RR X. RR ) ) |
| 43 |
|
xp1st |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 44 |
42 43
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 45 |
44
|
rexrd |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR* ) |
| 46 |
|
xp2nd |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 47 |
42 46
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 48 |
47
|
rexrd |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR* ) |
| 49 |
6
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. RR+ ) |
| 50 |
23
|
nnrpd |
|- ( n e. NN -> ( 2 ^ n ) e. RR+ ) |
| 51 |
50
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR+ ) |
| 52 |
49 51
|
rpdivcld |
|- ( ( ph /\ n e. NN ) -> ( W / ( 2 ^ n ) ) e. RR+ ) |
| 53 |
17 52
|
ltsubrpd |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) < ( 1st ` ( F ` n ) ) ) |
| 54 |
|
id |
|- ( n e. NN -> n e. NN ) |
| 55 |
|
opex |
|- <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V |
| 56 |
55
|
a1i |
|- ( n e. NN -> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V ) |
| 57 |
7
|
fvmpt2 |
|- ( ( n e. NN /\ <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V ) -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 58 |
54 56 57
|
syl2anc |
|- ( n e. NN -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 59 |
58
|
fveq2d |
|- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 60 |
|
ovex |
|- ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. _V |
| 61 |
|
fvex |
|- ( 2nd ` ( F ` n ) ) e. _V |
| 62 |
|
op1stg |
|- ( ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. _V /\ ( 2nd ` ( F ` n ) ) e. _V ) -> ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) |
| 63 |
60 61 62
|
mp2an |
|- ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) |
| 64 |
63
|
a1i |
|- ( n e. NN -> ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) |
| 65 |
59 64
|
eqtrd |
|- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) |
| 66 |
65
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) |
| 67 |
66
|
breq1d |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) < ( 1st ` ( F ` n ) ) ) ) |
| 68 |
53 67
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) ) |
| 69 |
58
|
fveq2d |
|- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 70 |
60 61
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( 2nd ` ( F ` n ) ) |
| 71 |
70
|
a1i |
|- ( n e. NN -> ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( 2nd ` ( F ` n ) ) ) |
| 72 |
69 71
|
eqtrd |
|- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( F ` n ) ) ) |
| 73 |
72
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( F ` n ) ) ) |
| 74 |
73
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) = ( 2nd ` ( G ` n ) ) ) |
| 75 |
31 74
|
eqled |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) <_ ( 2nd ` ( G ` n ) ) ) |
| 76 |
|
icossioo |
|- ( ( ( ( 1st ` ( G ` n ) ) e. RR* /\ ( 2nd ` ( G ` n ) ) e. RR* ) /\ ( ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) /\ ( 2nd ` ( F ` n ) ) <_ ( 2nd ` ( G ` n ) ) ) ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) |
| 77 |
45 48 68 75 76
|
syl22anc |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) |
| 78 |
|
1st2nd2 |
|- ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 79 |
15 78
|
syl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 80 |
79
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 81 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 82 |
81
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 83 |
80 82
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) |
| 84 |
|
1st2nd2 |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
| 85 |
42 84
|
syl |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
| 86 |
85
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( (,) ` ( G ` n ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) ) |
| 87 |
|
df-ov |
|- ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
| 88 |
87
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) ) |
| 89 |
86 88
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( (,) ` ( G ` n ) ) = ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) |
| 90 |
83 89
|
sseq12d |
|- ( ( ph /\ n e. NN ) -> ( ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) <-> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) |
| 91 |
77 90
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) ) |
| 92 |
91
|
ralrimiva |
|- ( ph -> A. n e. NN ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) ) |
| 93 |
|
ss2iun |
|- ( A. n e. NN ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) -> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) |
| 94 |
92 93
|
syl |
|- ( ph -> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) |
| 95 |
|
fvex |
|- ( [,) ` ( F ` n ) ) e. _V |
| 96 |
95
|
rgenw |
|- A. n e. NN ( [,) ` ( F ` n ) ) e. _V |
| 97 |
96
|
a1i |
|- ( ph -> A. n e. NN ( [,) ` ( F ` n ) ) e. _V ) |
| 98 |
|
dfiun3g |
|- ( A. n e. NN ( [,) ` ( F ` n ) ) e. _V -> U_ n e. NN ( [,) ` ( F ` n ) ) = U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) |
| 99 |
97 98
|
syl |
|- ( ph -> U_ n e. NN ( [,) ` ( F ` n ) ) = U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) |
| 100 |
|
icof |
|- [,) : ( RR* X. RR* ) --> ~P RR* |
| 101 |
100
|
a1i |
|- ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) |
| 102 |
4 14 101
|
fcomptss |
|- ( ph -> ( [,) o. F ) = ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) |
| 103 |
102
|
eqcomd |
|- ( ph -> ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = ( [,) o. F ) ) |
| 104 |
103
|
rneqd |
|- ( ph -> ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = ran ( [,) o. F ) ) |
| 105 |
104
|
unieqd |
|- ( ph -> U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = U. ran ( [,) o. F ) ) |
| 106 |
99 105
|
eqtr2d |
|- ( ph -> U. ran ( [,) o. F ) = U_ n e. NN ( [,) ` ( F ` n ) ) ) |
| 107 |
|
fvex |
|- ( (,) ` ( G ` n ) ) e. _V |
| 108 |
107
|
rgenw |
|- A. n e. NN ( (,) ` ( G ` n ) ) e. _V |
| 109 |
108
|
a1i |
|- ( ph -> A. n e. NN ( (,) ` ( G ` n ) ) e. _V ) |
| 110 |
|
dfiun3g |
|- ( A. n e. NN ( (,) ` ( G ` n ) ) e. _V -> U_ n e. NN ( (,) ` ( G ` n ) ) = U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) |
| 111 |
109 110
|
syl |
|- ( ph -> U_ n e. NN ( (,) ` ( G ` n ) ) = U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) |
| 112 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 113 |
112
|
a1i |
|- ( ph -> (,) : ( RR* X. RR* ) --> ~P RR ) |
| 114 |
33 14 113
|
fcomptss |
|- ( ph -> ( (,) o. G ) = ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) |
| 115 |
114
|
eqcomd |
|- ( ph -> ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = ( (,) o. G ) ) |
| 116 |
115
|
rneqd |
|- ( ph -> ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = ran ( (,) o. G ) ) |
| 117 |
116
|
unieqd |
|- ( ph -> U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = U. ran ( (,) o. G ) ) |
| 118 |
111 117
|
eqtr2d |
|- ( ph -> U. ran ( (,) o. G ) = U_ n e. NN ( (,) ` ( G ` n ) ) ) |
| 119 |
106 118
|
sseq12d |
|- ( ph -> ( U. ran ( [,) o. F ) C_ U. ran ( (,) o. G ) <-> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) ) |
| 120 |
94 119
|
mpbird |
|- ( ph -> U. ran ( [,) o. F ) C_ U. ran ( (,) o. G ) ) |
| 121 |
5 120
|
sstrd |
|- ( ph -> A C_ U. ran ( (,) o. G ) ) |
| 122 |
121 8
|
jca |
|- ( ph -> ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) |
| 123 |
|
coeq2 |
|- ( f = G -> ( (,) o. f ) = ( (,) o. G ) ) |
| 124 |
123
|
rneqd |
|- ( f = G -> ran ( (,) o. f ) = ran ( (,) o. G ) ) |
| 125 |
124
|
unieqd |
|- ( f = G -> U. ran ( (,) o. f ) = U. ran ( (,) o. G ) ) |
| 126 |
125
|
sseq2d |
|- ( f = G -> ( A C_ U. ran ( (,) o. f ) <-> A C_ U. ran ( (,) o. G ) ) ) |
| 127 |
|
coeq2 |
|- ( f = G -> ( ( vol o. (,) ) o. f ) = ( ( vol o. (,) ) o. G ) ) |
| 128 |
127
|
fveq2d |
|- ( f = G -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
| 129 |
128
|
eqeq2d |
|- ( f = G -> ( Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) |
| 130 |
126 129
|
anbi12d |
|- ( f = G -> ( ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) ) |
| 131 |
130
|
rspcev |
|- ( ( G e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
| 132 |
41 122 131
|
syl2anc |
|- ( ph -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
| 133 |
36 132
|
jca |
|- ( ph -> ( Z e. RR* /\ E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) |
| 134 |
|
eqeq1 |
|- ( z = Z -> ( z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
| 135 |
134
|
anbi2d |
|- ( z = Z -> ( ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) |
| 136 |
135
|
rexbidv |
|- ( z = Z -> ( E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) |
| 137 |
136 1
|
elrab2 |
|- ( Z e. Q <-> ( Z e. RR* /\ E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) |
| 138 |
133 137
|
sylibr |
|- ( ph -> Z e. Q ) |
| 139 |
|
2fveq3 |
|- ( m = n -> ( 1st ` ( F ` m ) ) = ( 1st ` ( F ` n ) ) ) |
| 140 |
|
2fveq3 |
|- ( m = n -> ( 2nd ` ( F ` m ) ) = ( 2nd ` ( F ` n ) ) ) |
| 141 |
139 140
|
breq12d |
|- ( m = n -> ( ( 1st ` ( F ` m ) ) < ( 2nd ` ( F ` m ) ) <-> ( 1st ` ( F ` n ) ) < ( 2nd ` ( F ` n ) ) ) ) |
| 142 |
141
|
cbvrabv |
|- { m e. NN | ( 1st ` ( F ` m ) ) < ( 2nd ` ( F ` m ) ) } = { n e. NN | ( 1st ` ( F ` n ) ) < ( 2nd ` ( F ` n ) ) } |
| 143 |
17 31 6 142
|
ovolval5lem1 |
|- ( ph -> ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) <_ ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) |
| 144 |
|
nfcv |
|- F/_ n G |
| 145 |
33 14
|
fssd |
|- ( ph -> G : NN --> ( RR* X. RR* ) ) |
| 146 |
144 145
|
volioofmpt |
|- ( ph -> ( ( vol o. (,) ) o. G ) = ( n e. NN |-> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) ) |
| 147 |
66 73
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 148 |
147
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) = ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) |
| 149 |
148
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) = ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 150 |
146 149
|
eqtrd |
|- ( ph -> ( ( vol o. (,) ) o. G ) = ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 151 |
150
|
fveq2d |
|- ( ph -> ( sum^ ` ( ( vol o. (,) ) o. G ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) |
| 152 |
8 151
|
eqtrd |
|- ( ph -> Z = ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) |
| 153 |
|
nfcv |
|- F/_ n F |
| 154 |
|
ressxr |
|- RR C_ RR* |
| 155 |
|
xpss2 |
|- ( RR C_ RR* -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
| 156 |
154 155
|
ax-mp |
|- ( RR X. RR ) C_ ( RR X. RR* ) |
| 157 |
156
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
| 158 |
4 157
|
fssd |
|- ( ph -> F : NN --> ( RR X. RR* ) ) |
| 159 |
153 158
|
volicofmpt |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) |
| 160 |
159
|
fveq2d |
|- ( ph -> ( sum^ ` ( ( vol o. [,) ) o. F ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) |
| 161 |
2 160
|
eqtrd |
|- ( ph -> Y = ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) |
| 162 |
161
|
oveq1d |
|- ( ph -> ( Y +e W ) = ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) |
| 163 |
152 162
|
breq12d |
|- ( ph -> ( Z <_ ( Y +e W ) <-> ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) <_ ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) ) |
| 164 |
143 163
|
mpbird |
|- ( ph -> Z <_ ( Y +e W ) ) |
| 165 |
|
breq1 |
|- ( z = Z -> ( z <_ ( Y +e W ) <-> Z <_ ( Y +e W ) ) ) |
| 166 |
165
|
rspcev |
|- ( ( Z e. Q /\ Z <_ ( Y +e W ) ) -> E. z e. Q z <_ ( Y +e W ) ) |
| 167 |
138 164 166
|
syl2anc |
|- ( ph -> E. z e. Q z <_ ( Y +e W ) ) |