Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval5lem2.q |
|- Q = { z e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } |
2 |
|
ovolval5lem2.y |
|- ( ph -> Y = ( sum^ ` ( ( vol o. [,) ) o. F ) ) ) |
3 |
|
ovolval5lem2.z |
|- Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) |
4 |
|
ovolval5lem2.f |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
5 |
|
ovolval5lem2.s |
|- ( ph -> A C_ U. ran ( [,) o. F ) ) |
6 |
|
ovolval5lem2.w |
|- ( ph -> W e. RR+ ) |
7 |
|
ovolval5lem2.g |
|- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) |
8 |
3
|
a1i |
|- ( ph -> Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
9 |
|
nnex |
|- NN e. _V |
10 |
9
|
a1i |
|- ( ph -> NN e. _V ) |
11 |
|
volioof |
|- ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) |
12 |
11
|
a1i |
|- ( ph -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) |
13 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
14 |
13
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) |
15 |
4
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ( RR X. RR ) ) |
16 |
|
xp1st |
|- ( ( F ` n ) e. ( RR X. RR ) -> ( 1st ` ( F ` n ) ) e. RR ) |
17 |
15 16
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
18 |
6
|
rpred |
|- ( ph -> W e. RR ) |
19 |
18
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. RR ) |
20 |
|
2nn |
|- 2 e. NN |
21 |
20
|
a1i |
|- ( n e. NN -> 2 e. NN ) |
22 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
23 |
21 22
|
nnexpcld |
|- ( n e. NN -> ( 2 ^ n ) e. NN ) |
24 |
23
|
nnred |
|- ( n e. NN -> ( 2 ^ n ) e. RR ) |
25 |
24
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR ) |
26 |
23
|
nnne0d |
|- ( n e. NN -> ( 2 ^ n ) =/= 0 ) |
27 |
26
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) =/= 0 ) |
28 |
19 25 27
|
redivcld |
|- ( ( ph /\ n e. NN ) -> ( W / ( 2 ^ n ) ) e. RR ) |
29 |
17 28
|
resubcld |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. RR ) |
30 |
|
xp2nd |
|- ( ( F ` n ) e. ( RR X. RR ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
31 |
15 30
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
32 |
29 31
|
opelxpd |
|- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. ( RR X. RR ) ) |
33 |
32 7
|
fmptd |
|- ( ph -> G : NN --> ( RR X. RR ) ) |
34 |
12 14 33
|
fcoss |
|- ( ph -> ( ( vol o. (,) ) o. G ) : NN --> ( 0 [,] +oo ) ) |
35 |
10 34
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( ( vol o. (,) ) o. G ) ) e. RR* ) |
36 |
8 35
|
eqeltrd |
|- ( ph -> Z e. RR* ) |
37 |
|
reex |
|- RR e. _V |
38 |
37 37
|
xpex |
|- ( RR X. RR ) e. _V |
39 |
38
|
a1i |
|- ( ph -> ( RR X. RR ) e. _V ) |
40 |
39 10
|
elmapd |
|- ( ph -> ( G e. ( ( RR X. RR ) ^m NN ) <-> G : NN --> ( RR X. RR ) ) ) |
41 |
33 40
|
mpbird |
|- ( ph -> G e. ( ( RR X. RR ) ^m NN ) ) |
42 |
33
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ( RR X. RR ) ) |
43 |
|
xp1st |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
44 |
42 43
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR ) |
45 |
44
|
rexrd |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR* ) |
46 |
|
xp2nd |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
47 |
42 46
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
48 |
47
|
rexrd |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR* ) |
49 |
6
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. RR+ ) |
50 |
23
|
nnrpd |
|- ( n e. NN -> ( 2 ^ n ) e. RR+ ) |
51 |
50
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR+ ) |
52 |
49 51
|
rpdivcld |
|- ( ( ph /\ n e. NN ) -> ( W / ( 2 ^ n ) ) e. RR+ ) |
53 |
17 52
|
ltsubrpd |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) < ( 1st ` ( F ` n ) ) ) |
54 |
|
id |
|- ( n e. NN -> n e. NN ) |
55 |
|
opex |
|- <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V |
56 |
55
|
a1i |
|- ( n e. NN -> <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V ) |
57 |
7
|
fvmpt2 |
|- ( ( n e. NN /\ <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. e. _V ) -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) |
58 |
54 56 57
|
syl2anc |
|- ( n e. NN -> ( G ` n ) = <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) |
59 |
58
|
fveq2d |
|- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
60 |
|
ovex |
|- ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. _V |
61 |
|
fvex |
|- ( 2nd ` ( F ` n ) ) e. _V |
62 |
|
op1stg |
|- ( ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) e. _V /\ ( 2nd ` ( F ` n ) ) e. _V ) -> ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) |
63 |
60 61 62
|
mp2an |
|- ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) |
64 |
63
|
a1i |
|- ( n e. NN -> ( 1st ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) |
65 |
59 64
|
eqtrd |
|- ( n e. NN -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) |
66 |
65
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) ) |
67 |
66
|
breq1d |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) <-> ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) < ( 1st ` ( F ` n ) ) ) ) |
68 |
53 67
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) ) |
69 |
58
|
fveq2d |
|- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
70 |
60 61
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( 2nd ` ( F ` n ) ) |
71 |
70
|
a1i |
|- ( n e. NN -> ( 2nd ` <. ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( 2nd ` ( F ` n ) ) ) |
72 |
69 71
|
eqtrd |
|- ( n e. NN -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( F ` n ) ) ) |
73 |
72
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( F ` n ) ) ) |
74 |
73
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) = ( 2nd ` ( G ` n ) ) ) |
75 |
31 74
|
eqled |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) <_ ( 2nd ` ( G ` n ) ) ) |
76 |
|
icossioo |
|- ( ( ( ( 1st ` ( G ` n ) ) e. RR* /\ ( 2nd ` ( G ` n ) ) e. RR* ) /\ ( ( 1st ` ( G ` n ) ) < ( 1st ` ( F ` n ) ) /\ ( 2nd ` ( F ` n ) ) <_ ( 2nd ` ( G ` n ) ) ) ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) |
77 |
45 48 68 75 76
|
syl22anc |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) |
78 |
|
1st2nd2 |
|- ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
79 |
15 78
|
syl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
80 |
79
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
81 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
82 |
81
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) = ( [,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
83 |
80 82
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) |
84 |
|
1st2nd2 |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
85 |
42 84
|
syl |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
86 |
85
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( (,) ` ( G ` n ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) ) |
87 |
|
df-ov |
|- ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
88 |
87
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( (,) ` <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) ) |
89 |
86 88
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( (,) ` ( G ` n ) ) = ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) |
90 |
83 89
|
sseq12d |
|- ( ( ph /\ n e. NN ) -> ( ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) <-> ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) |
91 |
77 90
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) ) |
92 |
91
|
ralrimiva |
|- ( ph -> A. n e. NN ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) ) |
93 |
|
ss2iun |
|- ( A. n e. NN ( [,) ` ( F ` n ) ) C_ ( (,) ` ( G ` n ) ) -> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) |
94 |
92 93
|
syl |
|- ( ph -> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) |
95 |
|
fvex |
|- ( [,) ` ( F ` n ) ) e. _V |
96 |
95
|
rgenw |
|- A. n e. NN ( [,) ` ( F ` n ) ) e. _V |
97 |
96
|
a1i |
|- ( ph -> A. n e. NN ( [,) ` ( F ` n ) ) e. _V ) |
98 |
|
dfiun3g |
|- ( A. n e. NN ( [,) ` ( F ` n ) ) e. _V -> U_ n e. NN ( [,) ` ( F ` n ) ) = U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) |
99 |
97 98
|
syl |
|- ( ph -> U_ n e. NN ( [,) ` ( F ` n ) ) = U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) |
100 |
|
icof |
|- [,) : ( RR* X. RR* ) --> ~P RR* |
101 |
100
|
a1i |
|- ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) |
102 |
4 14 101
|
fcomptss |
|- ( ph -> ( [,) o. F ) = ( n e. NN |-> ( [,) ` ( F ` n ) ) ) ) |
103 |
102
|
eqcomd |
|- ( ph -> ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = ( [,) o. F ) ) |
104 |
103
|
rneqd |
|- ( ph -> ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = ran ( [,) o. F ) ) |
105 |
104
|
unieqd |
|- ( ph -> U. ran ( n e. NN |-> ( [,) ` ( F ` n ) ) ) = U. ran ( [,) o. F ) ) |
106 |
99 105
|
eqtr2d |
|- ( ph -> U. ran ( [,) o. F ) = U_ n e. NN ( [,) ` ( F ` n ) ) ) |
107 |
|
fvex |
|- ( (,) ` ( G ` n ) ) e. _V |
108 |
107
|
rgenw |
|- A. n e. NN ( (,) ` ( G ` n ) ) e. _V |
109 |
108
|
a1i |
|- ( ph -> A. n e. NN ( (,) ` ( G ` n ) ) e. _V ) |
110 |
|
dfiun3g |
|- ( A. n e. NN ( (,) ` ( G ` n ) ) e. _V -> U_ n e. NN ( (,) ` ( G ` n ) ) = U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) |
111 |
109 110
|
syl |
|- ( ph -> U_ n e. NN ( (,) ` ( G ` n ) ) = U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) |
112 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
113 |
112
|
a1i |
|- ( ph -> (,) : ( RR* X. RR* ) --> ~P RR ) |
114 |
33 14 113
|
fcomptss |
|- ( ph -> ( (,) o. G ) = ( n e. NN |-> ( (,) ` ( G ` n ) ) ) ) |
115 |
114
|
eqcomd |
|- ( ph -> ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = ( (,) o. G ) ) |
116 |
115
|
rneqd |
|- ( ph -> ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = ran ( (,) o. G ) ) |
117 |
116
|
unieqd |
|- ( ph -> U. ran ( n e. NN |-> ( (,) ` ( G ` n ) ) ) = U. ran ( (,) o. G ) ) |
118 |
111 117
|
eqtr2d |
|- ( ph -> U. ran ( (,) o. G ) = U_ n e. NN ( (,) ` ( G ` n ) ) ) |
119 |
106 118
|
sseq12d |
|- ( ph -> ( U. ran ( [,) o. F ) C_ U. ran ( (,) o. G ) <-> U_ n e. NN ( [,) ` ( F ` n ) ) C_ U_ n e. NN ( (,) ` ( G ` n ) ) ) ) |
120 |
94 119
|
mpbird |
|- ( ph -> U. ran ( [,) o. F ) C_ U. ran ( (,) o. G ) ) |
121 |
5 120
|
sstrd |
|- ( ph -> A C_ U. ran ( (,) o. G ) ) |
122 |
121 8
|
jca |
|- ( ph -> ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) |
123 |
|
coeq2 |
|- ( f = G -> ( (,) o. f ) = ( (,) o. G ) ) |
124 |
123
|
rneqd |
|- ( f = G -> ran ( (,) o. f ) = ran ( (,) o. G ) ) |
125 |
124
|
unieqd |
|- ( f = G -> U. ran ( (,) o. f ) = U. ran ( (,) o. G ) ) |
126 |
125
|
sseq2d |
|- ( f = G -> ( A C_ U. ran ( (,) o. f ) <-> A C_ U. ran ( (,) o. G ) ) ) |
127 |
|
coeq2 |
|- ( f = G -> ( ( vol o. (,) ) o. f ) = ( ( vol o. (,) ) o. G ) ) |
128 |
127
|
fveq2d |
|- ( f = G -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
129 |
128
|
eqeq2d |
|- ( f = G -> ( Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) |
130 |
126 129
|
anbi12d |
|- ( f = G -> ( ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) ) |
131 |
130
|
rspcev |
|- ( ( G e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. G ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
132 |
41 122 131
|
syl2anc |
|- ( ph -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
133 |
36 132
|
jca |
|- ( ph -> ( Z e. RR* /\ E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) |
134 |
|
eqeq1 |
|- ( z = Z -> ( z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
135 |
134
|
anbi2d |
|- ( z = Z -> ( ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) |
136 |
135
|
rexbidv |
|- ( z = Z -> ( E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) |
137 |
136 1
|
elrab2 |
|- ( Z e. Q <-> ( Z e. RR* /\ E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ Z = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) ) |
138 |
133 137
|
sylibr |
|- ( ph -> Z e. Q ) |
139 |
|
2fveq3 |
|- ( m = n -> ( 1st ` ( F ` m ) ) = ( 1st ` ( F ` n ) ) ) |
140 |
|
2fveq3 |
|- ( m = n -> ( 2nd ` ( F ` m ) ) = ( 2nd ` ( F ` n ) ) ) |
141 |
139 140
|
breq12d |
|- ( m = n -> ( ( 1st ` ( F ` m ) ) < ( 2nd ` ( F ` m ) ) <-> ( 1st ` ( F ` n ) ) < ( 2nd ` ( F ` n ) ) ) ) |
142 |
141
|
cbvrabv |
|- { m e. NN | ( 1st ` ( F ` m ) ) < ( 2nd ` ( F ` m ) ) } = { n e. NN | ( 1st ` ( F ` n ) ) < ( 2nd ` ( F ` n ) ) } |
143 |
17 31 6 142
|
ovolval5lem1 |
|- ( ph -> ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) <_ ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) |
144 |
|
nfcv |
|- F/_ n G |
145 |
33 14
|
fssd |
|- ( ph -> G : NN --> ( RR* X. RR* ) ) |
146 |
144 145
|
volioofmpt |
|- ( ph -> ( ( vol o. (,) ) o. G ) = ( n e. NN |-> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) ) |
147 |
66 73
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) = ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
148 |
147
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) = ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) |
149 |
148
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( vol ` ( ( 1st ` ( G ` n ) ) (,) ( 2nd ` ( G ` n ) ) ) ) ) = ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) |
150 |
146 149
|
eqtrd |
|- ( ph -> ( ( vol o. (,) ) o. G ) = ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) |
151 |
150
|
fveq2d |
|- ( ph -> ( sum^ ` ( ( vol o. (,) ) o. G ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) |
152 |
8 151
|
eqtrd |
|- ( ph -> Z = ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) |
153 |
|
nfcv |
|- F/_ n F |
154 |
|
ressxr |
|- RR C_ RR* |
155 |
|
xpss2 |
|- ( RR C_ RR* -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
156 |
154 155
|
ax-mp |
|- ( RR X. RR ) C_ ( RR X. RR* ) |
157 |
156
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( RR X. RR* ) ) |
158 |
4 157
|
fssd |
|- ( ph -> F : NN --> ( RR X. RR* ) ) |
159 |
153 158
|
volicofmpt |
|- ( ph -> ( ( vol o. [,) ) o. F ) = ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) |
160 |
159
|
fveq2d |
|- ( ph -> ( sum^ ` ( ( vol o. [,) ) o. F ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) |
161 |
2 160
|
eqtrd |
|- ( ph -> Y = ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) ) |
162 |
161
|
oveq1d |
|- ( ph -> ( Y +e W ) = ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) |
163 |
152 162
|
breq12d |
|- ( ph -> ( Z <_ ( Y +e W ) <-> ( sum^ ` ( n e. NN |-> ( vol ` ( ( ( 1st ` ( F ` n ) ) - ( W / ( 2 ^ n ) ) ) (,) ( 2nd ` ( F ` n ) ) ) ) ) ) <_ ( ( sum^ ` ( n e. NN |-> ( vol ` ( ( 1st ` ( F ` n ) ) [,) ( 2nd ` ( F ` n ) ) ) ) ) ) +e W ) ) ) |
164 |
143 163
|
mpbird |
|- ( ph -> Z <_ ( Y +e W ) ) |
165 |
|
breq1 |
|- ( z = Z -> ( z <_ ( Y +e W ) <-> Z <_ ( Y +e W ) ) ) |
166 |
165
|
rspcev |
|- ( ( Z e. Q /\ Z <_ ( Y +e W ) ) -> E. z e. Q z <_ ( Y +e W ) ) |
167 |
138 164 166
|
syl2anc |
|- ( ph -> E. z e. Q z <_ ( Y +e W ) ) |