Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval5lem3.m |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
2 |
|
ovolval5lem3.q |
⊢ 𝑄 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } |
3 |
2
|
ssrab3 |
⊢ 𝑄 ⊆ ℝ* |
4 |
|
infxrcl |
⊢ ( 𝑄 ⊆ ℝ* → inf ( 𝑄 , ℝ* , < ) ∈ ℝ* ) |
5 |
3 4
|
mp1i |
⊢ ( ⊤ → inf ( 𝑄 , ℝ* , < ) ∈ ℝ* ) |
6 |
1
|
ssrab3 |
⊢ 𝑀 ⊆ ℝ* |
7 |
|
infxrcl |
⊢ ( 𝑀 ⊆ ℝ* → inf ( 𝑀 , ℝ* , < ) ∈ ℝ* ) |
8 |
6 7
|
mp1i |
⊢ ( ⊤ → inf ( 𝑀 , ℝ* , < ) ∈ ℝ* ) |
9 |
3
|
a1i |
⊢ ( ⊤ → 𝑄 ⊆ ℝ* ) |
10 |
6
|
a1i |
⊢ ( ⊤ → 𝑀 ⊆ ℝ* ) |
11 |
1
|
reqabi |
⊢ ( 𝑦 ∈ 𝑀 ↔ ( 𝑦 ∈ ℝ* ∧ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
12 |
11
|
simprbi |
⊢ ( 𝑦 ∈ 𝑀 → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
13 |
|
coeq2 |
⊢ ( 𝑔 = 𝑓 → ( (,) ∘ 𝑔 ) = ( (,) ∘ 𝑓 ) ) |
14 |
13
|
rneqd |
⊢ ( 𝑔 = 𝑓 → ran ( (,) ∘ 𝑔 ) = ran ( (,) ∘ 𝑓 ) ) |
15 |
14
|
unieqd |
⊢ ( 𝑔 = 𝑓 → ∪ ran ( (,) ∘ 𝑔 ) = ∪ ran ( (,) ∘ 𝑓 ) ) |
16 |
15
|
sseq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
17 |
|
coeq2 |
⊢ ( 𝑔 = 𝑓 → ( ( vol ∘ (,) ) ∘ 𝑔 ) = ( ( vol ∘ (,) ) ∘ 𝑓 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑔 = 𝑓 → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
20 |
16 19
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
21 |
20
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
22 |
21
|
rabbii |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } |
23 |
2 22
|
eqtr4i |
⊢ 𝑄 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } |
24 |
|
simp3r |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
25 |
|
eqid |
⊢ ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ ( 𝑚 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ⟩ ) ) ) = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ ( 𝑚 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ⟩ ) ) ) |
26 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) ) |
28 |
|
simp3l |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
29 |
|
simp1 |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑤 ∈ ℝ+ ) |
30 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
31 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑤 / ( 2 ↑ 𝑚 ) ) = ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) |
33 |
30 32
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) ) |
34 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
35 |
33 34
|
opeq12d |
⊢ ( 𝑚 = 𝑛 → ⟨ ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ⟩ = ⟨ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ⟩ ) |
36 |
35
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) ⟩ ) = ( 𝑛 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ⟩ ) |
37 |
23 24 25 27 28 29 36
|
ovolval5lem2 |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) |
38 |
37
|
rexlimdv3a |
⊢ ( 𝑤 ∈ ℝ+ → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) ) |
39 |
12 38
|
mpan9 |
⊢ ( ( 𝑦 ∈ 𝑀 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) |
40 |
39
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝑀 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) |
41 |
9 10 40
|
infleinf |
⊢ ( ⊤ → inf ( 𝑄 , ℝ* , < ) ≤ inf ( 𝑀 , ℝ* , < ) ) |
42 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ↔ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
43 |
42
|
anbi2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
44 |
43
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
45 |
44
|
cbvrabv |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } |
46 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
47 |
|
ioossico |
⊢ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ⊆ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
48 |
47
|
a1i |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ⊆ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
49 |
26
|
adantr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) ) |
50 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
51 |
49 50
|
fvovco |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
52 |
49 50
|
fvovco |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
53 |
48 51 52
|
3sstr4d |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ) |
54 |
53
|
ralrimiva |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∀ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ) |
55 |
|
ss2iun |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) → ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ) |
56 |
54 55
|
syl |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ) |
57 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
58 |
57
|
a1i |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ) |
59 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
60 |
59
|
a1i |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) |
61 |
58 60 26
|
fcoss |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ ) |
62 |
61
|
ffnd |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( (,) ∘ 𝑓 ) Fn ℕ ) |
63 |
|
fniunfv |
⊢ ( ( (,) ∘ 𝑓 ) Fn ℕ → ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ∪ ran ( (,) ∘ 𝑓 ) ) |
64 |
62 63
|
syl |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ∪ ran ( (,) ∘ 𝑓 ) ) |
65 |
|
icof |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
66 |
65
|
a1i |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* ) |
67 |
66 60 26
|
fcoss |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( [,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ* ) |
68 |
67
|
ffnd |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( [,) ∘ 𝑓 ) Fn ℕ ) |
69 |
|
fniunfv |
⊢ ( ( [,) ∘ 𝑓 ) Fn ℕ → ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ∪ ran ( [,) ∘ 𝑓 ) ) |
70 |
68 69
|
syl |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ∪ ran ( [,) ∘ 𝑓 ) ) |
71 |
56 64 70
|
3sstr3d |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
73 |
46 72
|
sstrd |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
74 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) |
75 |
26
|
voliooicof |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ( vol ∘ (,) ) ∘ 𝑓 ) = ( ( vol ∘ [,) ) ∘ 𝑓 ) ) |
76 |
75
|
fveq2d |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
77 |
76
|
adantr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
78 |
74 77
|
eqtrd |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
79 |
73 78
|
anim12dan |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) → ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
80 |
79
|
ex |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
81 |
80
|
reximia |
⊢ ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
82 |
81
|
a1i |
⊢ ( 𝑦 ∈ ℝ* → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
83 |
82
|
ss2rabi |
⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
84 |
45 83
|
eqsstri |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
85 |
84 2 1
|
3sstr4i |
⊢ 𝑄 ⊆ 𝑀 |
86 |
|
infxrss |
⊢ ( ( 𝑄 ⊆ 𝑀 ∧ 𝑀 ⊆ ℝ* ) → inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < ) ) |
87 |
85 6 86
|
mp2an |
⊢ inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < ) |
88 |
87
|
a1i |
⊢ ( ⊤ → inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < ) ) |
89 |
5 8 41 88
|
xrletrid |
⊢ ( ⊤ → inf ( 𝑄 , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) ) |
90 |
89
|
mptru |
⊢ inf ( 𝑄 , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) |