Metamath Proof Explorer


Theorem ovolval5lem3

Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval5lem3.m 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) }
ovolval5lem3.q 𝑄 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) }
Assertion ovolval5lem3 inf ( 𝑄 , ℝ* , < ) = inf ( 𝑀 , ℝ* , < )

Proof

Step Hyp Ref Expression
1 ovolval5lem3.m 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) }
2 ovolval5lem3.q 𝑄 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) }
3 ssrab2 { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ ℝ*
4 2 3 eqsstri 𝑄 ⊆ ℝ*
5 infxrcl ( 𝑄 ⊆ ℝ* → inf ( 𝑄 , ℝ* , < ) ∈ ℝ* )
6 4 5 mp1i ( ⊤ → inf ( 𝑄 , ℝ* , < ) ∈ ℝ* )
7 ssrab2 { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } ⊆ ℝ*
8 1 7 eqsstri 𝑀 ⊆ ℝ*
9 infxrcl ( 𝑀 ⊆ ℝ* → inf ( 𝑀 , ℝ* , < ) ∈ ℝ* )
10 8 9 mp1i ( ⊤ → inf ( 𝑀 , ℝ* , < ) ∈ ℝ* )
11 4 a1i ( ⊤ → 𝑄 ⊆ ℝ* )
12 8 a1i ( ⊤ → 𝑀 ⊆ ℝ* )
13 simpr ( ( 𝑦𝑀𝑤 ∈ ℝ+ ) → 𝑤 ∈ ℝ+ )
14 1 rabeq2i ( 𝑦𝑀 ↔ ( 𝑦 ∈ ℝ* ∧ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) )
15 14 biimpi ( 𝑦𝑀 → ( 𝑦 ∈ ℝ* ∧ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) )
16 15 simprd ( 𝑦𝑀 → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) )
17 16 adantr ( ( 𝑦𝑀𝑤 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) )
18 coeq2 ( 𝑔 = 𝑓 → ( (,) ∘ 𝑔 ) = ( (,) ∘ 𝑓 ) )
19 18 rneqd ( 𝑔 = 𝑓 → ran ( (,) ∘ 𝑔 ) = ran ( (,) ∘ 𝑓 ) )
20 19 unieqd ( 𝑔 = 𝑓 ran ( (,) ∘ 𝑔 ) = ran ( (,) ∘ 𝑓 ) )
21 20 sseq2d ( 𝑔 = 𝑓 → ( 𝐴 ran ( (,) ∘ 𝑔 ) ↔ 𝐴 ran ( (,) ∘ 𝑓 ) ) )
22 coeq2 ( 𝑔 = 𝑓 → ( ( vol ∘ (,) ) ∘ 𝑔 ) = ( ( vol ∘ (,) ) ∘ 𝑓 ) )
23 22 fveq2d ( 𝑔 = 𝑓 → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) )
24 23 eqeq2d ( 𝑔 = 𝑓 → ( 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) )
25 21 24 anbi12d ( 𝑔 = 𝑓 → ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
26 25 cbvrexvw ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) )
27 26 rabbii { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) }
28 2 27 eqtr4i 𝑄 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) }
29 simp3r ( ( 𝑤 ∈ ℝ+𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) )
30 eqid ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ ( 𝑚 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑓𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓𝑚 ) ) ⟩ ) ) ) = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ ( 𝑚 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑓𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓𝑚 ) ) ⟩ ) ) )
31 elmapi ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) )
32 31 3ad2ant2 ( ( 𝑤 ∈ ℝ+𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) )
33 simp3l ( ( 𝑤 ∈ ℝ+𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝐴 ran ( [,) ∘ 𝑓 ) )
34 simp1 ( ( 𝑤 ∈ ℝ+𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑤 ∈ ℝ+ )
35 2fveq3 ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑓𝑚 ) ) = ( 1st ‘ ( 𝑓𝑛 ) ) )
36 oveq2 ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) )
37 36 oveq2d ( 𝑚 = 𝑛 → ( 𝑤 / ( 2 ↑ 𝑚 ) ) = ( 𝑤 / ( 2 ↑ 𝑛 ) ) )
38 35 37 oveq12d ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑓𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑓𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) )
39 2fveq3 ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓𝑚 ) ) = ( 2nd ‘ ( 𝑓𝑛 ) ) )
40 38 39 opeq12d ( 𝑚 = 𝑛 → ⟨ ( ( 1st ‘ ( 𝑓𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓𝑚 ) ) ⟩ = ⟨ ( ( 1st ‘ ( 𝑓𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓𝑛 ) ) ⟩ )
41 40 cbvmptv ( 𝑚 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑓𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓𝑚 ) ) ⟩ ) = ( 𝑛 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑓𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓𝑛 ) ) ⟩ )
42 28 29 30 32 33 34 41 ovolval5lem2 ( ( 𝑤 ∈ ℝ+𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → ∃ 𝑧𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) )
43 42 3exp ( 𝑤 ∈ ℝ+ → ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) → ∃ 𝑧𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) ) )
44 43 rexlimdv ( 𝑤 ∈ ℝ+ → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) → ∃ 𝑧𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) )
45 44 imp ( ( 𝑤 ∈ ℝ+ ∧ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → ∃ 𝑧𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) )
46 13 17 45 syl2anc ( ( 𝑦𝑀𝑤 ∈ ℝ+ ) → ∃ 𝑧𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) )
47 46 3adant1 ( ( ⊤ ∧ 𝑦𝑀𝑤 ∈ ℝ+ ) → ∃ 𝑧𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) )
48 11 12 47 infleinf ( ⊤ → inf ( 𝑄 , ℝ* , < ) ≤ inf ( 𝑀 , ℝ* , < ) )
49 eqeq1 ( 𝑧 = 𝑦 → ( 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ↔ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) )
50 49 anbi2d ( 𝑧 = 𝑦 → ( ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
51 50 rexbidv ( 𝑧 = 𝑦 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
52 51 cbvrabv { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) }
53 simpr ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ran ( (,) ∘ 𝑓 ) ) → 𝐴 ran ( (,) ∘ 𝑓 ) )
54 ioossico ( ( 1st ‘ ( 𝑓𝑛 ) ) (,) ( 2nd ‘ ( 𝑓𝑛 ) ) ) ⊆ ( ( 1st ‘ ( 𝑓𝑛 ) ) [,) ( 2nd ‘ ( 𝑓𝑛 ) ) )
55 54 a1i ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝑓𝑛 ) ) (,) ( 2nd ‘ ( 𝑓𝑛 ) ) ) ⊆ ( ( 1st ‘ ( 𝑓𝑛 ) ) [,) ( 2nd ‘ ( 𝑓𝑛 ) ) ) )
56 31 adantr ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) )
57 simpr ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
58 56 57 fvovco ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 1st ‘ ( 𝑓𝑛 ) ) (,) ( 2nd ‘ ( 𝑓𝑛 ) ) ) )
59 56 57 fvovco ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 1st ‘ ( 𝑓𝑛 ) ) [,) ( 2nd ‘ ( 𝑓𝑛 ) ) ) )
60 58 59 sseq12d ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ↔ ( ( 1st ‘ ( 𝑓𝑛 ) ) (,) ( 2nd ‘ ( 𝑓𝑛 ) ) ) ⊆ ( ( 1st ‘ ( 𝑓𝑛 ) ) [,) ( 2nd ‘ ( 𝑓𝑛 ) ) ) ) )
61 55 60 mpbird ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) )
62 61 ralrimiva ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∀ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) )
63 ss2iun ( ∀ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) → 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) )
64 62 63 syl ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) )
65 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
66 65 a1i ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ )
67 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
68 67 a1i ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) )
69 31 68 fssd ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) )
70 fco ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ )
71 66 69 70 syl2anc ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ )
72 71 ffnd ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( (,) ∘ 𝑓 ) Fn ℕ )
73 fniunfv ( ( (,) ∘ 𝑓 ) Fn ℕ → 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ran ( (,) ∘ 𝑓 ) )
74 72 73 syl ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ran ( (,) ∘ 𝑓 ) )
75 icof [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
76 75 a1i ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* )
77 fco ( ( [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( [,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ* )
78 76 69 77 syl2anc ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( [,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ* )
79 78 ffnd ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( [,) ∘ 𝑓 ) Fn ℕ )
80 fniunfv ( ( [,) ∘ 𝑓 ) Fn ℕ → 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ran ( [,) ∘ 𝑓 ) )
81 79 80 syl ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ran ( [,) ∘ 𝑓 ) )
82 74 81 sseq12d ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ↔ ran ( (,) ∘ 𝑓 ) ⊆ ran ( [,) ∘ 𝑓 ) ) )
83 64 82 mpbid ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ran ( (,) ∘ 𝑓 ) ⊆ ran ( [,) ∘ 𝑓 ) )
84 83 adantr ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ran ( (,) ∘ 𝑓 ) ) → ran ( (,) ∘ 𝑓 ) ⊆ ran ( [,) ∘ 𝑓 ) )
85 53 84 sstrd ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ran ( (,) ∘ 𝑓 ) ) → 𝐴 ran ( [,) ∘ 𝑓 ) )
86 85 adantrr ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) → 𝐴 ran ( [,) ∘ 𝑓 ) )
87 simpr ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) )
88 31 voliooicof ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ( vol ∘ (,) ) ∘ 𝑓 ) = ( ( vol ∘ [,) ) ∘ 𝑓 ) )
89 88 fveq2d ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) )
90 89 adantr ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) )
91 87 90 eqtrd ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) )
92 91 adantrl ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) )
93 86 92 jca ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) → ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) )
94 93 ex ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) )
95 94 reximia ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) )
96 95 rgenw 𝑦 ∈ ℝ* ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) )
97 ss2rab ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } ↔ ∀ 𝑦 ∈ ℝ* ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) )
98 96 97 mpbir { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) }
99 52 98 eqsstri { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) }
100 2 1 sseq12i ( 𝑄𝑀 ↔ { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } )
101 99 100 mpbir 𝑄𝑀
102 infxrss ( ( 𝑄𝑀𝑀 ⊆ ℝ* ) → inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < ) )
103 101 8 102 mp2an inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < )
104 103 a1i ( ⊤ → inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < ) )
105 6 10 48 104 xrletrid ( ⊤ → inf ( 𝑄 , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) )
106 105 mptru inf ( 𝑄 , ℝ* , < ) = inf ( 𝑀 , ℝ* , < )