Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval5lem3.m |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
2 |
|
ovolval5lem3.q |
⊢ 𝑄 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } |
3 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ ℝ* |
4 |
2 3
|
eqsstri |
⊢ 𝑄 ⊆ ℝ* |
5 |
|
infxrcl |
⊢ ( 𝑄 ⊆ ℝ* → inf ( 𝑄 , ℝ* , < ) ∈ ℝ* ) |
6 |
4 5
|
mp1i |
⊢ ( ⊤ → inf ( 𝑄 , ℝ* , < ) ∈ ℝ* ) |
7 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } ⊆ ℝ* |
8 |
1 7
|
eqsstri |
⊢ 𝑀 ⊆ ℝ* |
9 |
|
infxrcl |
⊢ ( 𝑀 ⊆ ℝ* → inf ( 𝑀 , ℝ* , < ) ∈ ℝ* ) |
10 |
8 9
|
mp1i |
⊢ ( ⊤ → inf ( 𝑀 , ℝ* , < ) ∈ ℝ* ) |
11 |
4
|
a1i |
⊢ ( ⊤ → 𝑄 ⊆ ℝ* ) |
12 |
8
|
a1i |
⊢ ( ⊤ → 𝑀 ⊆ ℝ* ) |
13 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑀 ∧ 𝑤 ∈ ℝ+ ) → 𝑤 ∈ ℝ+ ) |
14 |
1
|
rabeq2i |
⊢ ( 𝑦 ∈ 𝑀 ↔ ( 𝑦 ∈ ℝ* ∧ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
15 |
14
|
biimpi |
⊢ ( 𝑦 ∈ 𝑀 → ( 𝑦 ∈ ℝ* ∧ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
16 |
15
|
simprd |
⊢ ( 𝑦 ∈ 𝑀 → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑦 ∈ 𝑀 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
18 |
|
coeq2 |
⊢ ( 𝑔 = 𝑓 → ( (,) ∘ 𝑔 ) = ( (,) ∘ 𝑓 ) ) |
19 |
18
|
rneqd |
⊢ ( 𝑔 = 𝑓 → ran ( (,) ∘ 𝑔 ) = ran ( (,) ∘ 𝑓 ) ) |
20 |
19
|
unieqd |
⊢ ( 𝑔 = 𝑓 → ∪ ran ( (,) ∘ 𝑔 ) = ∪ ran ( (,) ∘ 𝑓 ) ) |
21 |
20
|
sseq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
22 |
|
coeq2 |
⊢ ( 𝑔 = 𝑓 → ( ( vol ∘ (,) ) ∘ 𝑔 ) = ( ( vol ∘ (,) ) ∘ 𝑓 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑔 = 𝑓 → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
25 |
21 24
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
26 |
25
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
27 |
26
|
rabbii |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } |
28 |
2 27
|
eqtr4i |
⊢ 𝑄 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } |
29 |
|
simp3r |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
30 |
|
eqid |
⊢ ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) ) ) = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) ) ) |
31 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) ) |
32 |
31
|
3ad2ant2 |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) ) |
33 |
|
simp3l |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
34 |
|
simp1 |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑤 ∈ ℝ+ ) |
35 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
36 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑤 / ( 2 ↑ 𝑚 ) ) = ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) |
38 |
35 37
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) ) |
39 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
40 |
38 39
|
opeq12d |
⊢ ( 𝑚 = 𝑛 → 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 = 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) 〉 ) |
41 |
40
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) − ( 𝑤 / ( 2 ↑ 𝑚 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) − ( 𝑤 / ( 2 ↑ 𝑛 ) ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) 〉 ) |
42 |
28 29 30 32 33 34 41
|
ovolval5lem2 |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) |
43 |
42
|
3exp |
⊢ ( 𝑤 ∈ ℝ+ → ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) ) ) |
44 |
43
|
rexlimdv |
⊢ ( 𝑤 ∈ ℝ+ → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) ) |
45 |
44
|
imp |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) |
46 |
13 17 45
|
syl2anc |
⊢ ( ( 𝑦 ∈ 𝑀 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) |
47 |
46
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝑀 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑧 ∈ 𝑄 𝑧 ≤ ( 𝑦 +𝑒 𝑤 ) ) |
48 |
11 12 47
|
infleinf |
⊢ ( ⊤ → inf ( 𝑄 , ℝ* , < ) ≤ inf ( 𝑀 , ℝ* , < ) ) |
49 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ↔ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
50 |
49
|
anbi2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
51 |
50
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
52 |
51
|
cbvrabv |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } |
53 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
54 |
|
ioossico |
⊢ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ⊆ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
55 |
54
|
a1i |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ⊆ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
56 |
31
|
adantr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) ) |
57 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
58 |
56 57
|
fvovco |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
59 |
56 57
|
fvovco |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
60 |
58 59
|
sseq12d |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ↔ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ⊆ ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
61 |
55 60
|
mpbird |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ) |
62 |
61
|
ralrimiva |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∀ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ) |
63 |
|
ss2iun |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) → ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ) |
64 |
62 63
|
syl |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ) |
65 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
66 |
65
|
a1i |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ) |
67 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
68 |
67
|
a1i |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) |
69 |
31 68
|
fssd |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
70 |
|
fco |
⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ ) |
71 |
66 69 70
|
syl2anc |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ ) |
72 |
71
|
ffnd |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( (,) ∘ 𝑓 ) Fn ℕ ) |
73 |
|
fniunfv |
⊢ ( ( (,) ∘ 𝑓 ) Fn ℕ → ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ∪ ran ( (,) ∘ 𝑓 ) ) |
74 |
72 73
|
syl |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) = ∪ ran ( (,) ∘ 𝑓 ) ) |
75 |
|
icof |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
76 |
75
|
a1i |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* ) |
77 |
|
fco |
⊢ ( ( [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* ∧ 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( [,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ* ) |
78 |
76 69 77
|
syl2anc |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( [,) ∘ 𝑓 ) : ℕ ⟶ 𝒫 ℝ* ) |
79 |
78
|
ffnd |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( [,) ∘ 𝑓 ) Fn ℕ ) |
80 |
|
fniunfv |
⊢ ( ( [,) ∘ 𝑓 ) Fn ℕ → ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ∪ ran ( [,) ∘ 𝑓 ) ) |
81 |
79 80
|
syl |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) = ∪ ran ( [,) ∘ 𝑓 ) ) |
82 |
74 81
|
sseq12d |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ∪ 𝑛 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑛 ) ⊆ ∪ 𝑛 ∈ ℕ ( ( [,) ∘ 𝑓 ) ‘ 𝑛 ) ↔ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) ) |
83 |
64 82
|
mpbid |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
84 |
83
|
adantr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
85 |
53 84
|
sstrd |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
86 |
85
|
adantrr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) → 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
87 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) |
88 |
31
|
voliooicof |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ( vol ∘ (,) ) ∘ 𝑓 ) = ( ( vol ∘ [,) ) ∘ 𝑓 ) ) |
89 |
88
|
fveq2d |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
90 |
89
|
adantr |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
91 |
87 90
|
eqtrd |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
92 |
91
|
adantrl |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) → 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
93 |
86 92
|
jca |
⊢ ( ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) → ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
94 |
93
|
ex |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
95 |
94
|
reximia |
⊢ ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
96 |
95
|
rgenw |
⊢ ∀ 𝑦 ∈ ℝ* ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
97 |
|
ss2rab |
⊢ ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } ↔ ∀ 𝑦 ∈ ℝ* ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
98 |
96 97
|
mpbir |
⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
99 |
52 98
|
eqsstri |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
100 |
2 1
|
sseq12i |
⊢ ( 𝑄 ⊆ 𝑀 ↔ { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } ) |
101 |
99 100
|
mpbir |
⊢ 𝑄 ⊆ 𝑀 |
102 |
|
infxrss |
⊢ ( ( 𝑄 ⊆ 𝑀 ∧ 𝑀 ⊆ ℝ* ) → inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < ) ) |
103 |
101 8 102
|
mp2an |
⊢ inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < ) |
104 |
103
|
a1i |
⊢ ( ⊤ → inf ( 𝑀 , ℝ* , < ) ≤ inf ( 𝑄 , ℝ* , < ) ) |
105 |
6 10 48 104
|
xrletrid |
⊢ ( ⊤ → inf ( 𝑄 , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) ) |
106 |
105
|
mptru |
⊢ inf ( 𝑄 , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) |