| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolval5lem3.m | ⊢ 𝑀  =  { 𝑦  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) } | 
						
							| 2 |  | ovolval5lem3.q | ⊢ 𝑄  =  { 𝑧  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) } | 
						
							| 3 | 2 | ssrab3 | ⊢ 𝑄  ⊆  ℝ* | 
						
							| 4 |  | infxrcl | ⊢ ( 𝑄  ⊆  ℝ*  →  inf ( 𝑄 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 5 | 3 4 | mp1i | ⊢ ( ⊤  →  inf ( 𝑄 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 6 | 1 | ssrab3 | ⊢ 𝑀  ⊆  ℝ* | 
						
							| 7 |  | infxrcl | ⊢ ( 𝑀  ⊆  ℝ*  →  inf ( 𝑀 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( ⊤  →  inf ( 𝑀 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 9 | 3 | a1i | ⊢ ( ⊤  →  𝑄  ⊆  ℝ* ) | 
						
							| 10 | 6 | a1i | ⊢ ( ⊤  →  𝑀  ⊆  ℝ* ) | 
						
							| 11 | 1 | reqabi | ⊢ ( 𝑦  ∈  𝑀  ↔  ( 𝑦  ∈  ℝ*  ∧  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 12 | 11 | simprbi | ⊢ ( 𝑦  ∈  𝑀  →  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) | 
						
							| 13 |  | coeq2 | ⊢ ( 𝑔  =  𝑓  →  ( (,)  ∘  𝑔 )  =  ( (,)  ∘  𝑓 ) ) | 
						
							| 14 | 13 | rneqd | ⊢ ( 𝑔  =  𝑓  →  ran  ( (,)  ∘  𝑔 )  =  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 15 | 14 | unieqd | ⊢ ( 𝑔  =  𝑓  →  ∪  ran  ( (,)  ∘  𝑔 )  =  ∪  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 16 | 15 | sseq2d | ⊢ ( 𝑔  =  𝑓  →  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ↔  𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 ) ) ) | 
						
							| 17 |  | coeq2 | ⊢ ( 𝑔  =  𝑓  →  ( ( vol  ∘  (,) )  ∘  𝑔 )  =  ( ( vol  ∘  (,) )  ∘  𝑓 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑔  =  𝑓  →  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) )  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑔  =  𝑓  →  ( 𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) )  ↔  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) | 
						
							| 20 | 16 19 | anbi12d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 21 | 20 | cbvrexvw | ⊢ ( ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) | 
						
							| 22 | 21 | rabbii | ⊢ { 𝑧  ∈  ℝ*  ∣  ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) }  =  { 𝑧  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) } | 
						
							| 23 | 2 22 | eqtr4i | ⊢ 𝑄  =  { 𝑧  ∈  ℝ*  ∣  ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) } | 
						
							| 24 |  | simp3r | ⊢ ( ( 𝑤  ∈  ℝ+  ∧  𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) )  →  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  ( 𝑚  ∈  ℕ  ↦  〈 ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  −  ( 𝑤  /  ( 2 ↑ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) ) )  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  ( 𝑚  ∈  ℕ  ↦  〈 ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  −  ( 𝑤  /  ( 2 ↑ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 ) ) ) | 
						
							| 26 |  | elmapi | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  𝑓 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑤  ∈  ℝ+  ∧  𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) )  →  𝑓 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 28 |  | simp3l | ⊢ ( ( 𝑤  ∈  ℝ+  ∧  𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) )  →  𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 ) ) | 
						
							| 29 |  | simp1 | ⊢ ( ( 𝑤  ∈  ℝ+  ∧  𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) )  →  𝑤  ∈  ℝ+ ) | 
						
							| 30 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  =  ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 2 ↑ 𝑚 )  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑤  /  ( 2 ↑ 𝑚 ) )  =  ( 𝑤  /  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 33 | 30 32 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  −  ( 𝑤  /  ( 2 ↑ 𝑚 ) ) )  =  ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  −  ( 𝑤  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 34 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) )  =  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 35 | 33 34 | opeq12d | ⊢ ( 𝑚  =  𝑛  →  〈 ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  −  ( 𝑤  /  ( 2 ↑ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) 〉  =  〈 ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  −  ( 𝑤  /  ( 2 ↑ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) 〉 ) | 
						
							| 36 | 35 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  〈 ( ( 1st  ‘ ( 𝑓 ‘ 𝑚 ) )  −  ( 𝑤  /  ( 2 ↑ 𝑚 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑚 ) ) 〉 )  =  ( 𝑛  ∈  ℕ  ↦  〈 ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) )  −  ( 𝑤  /  ( 2 ↑ 𝑛 ) ) ) ,  ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) 〉 ) | 
						
							| 37 | 23 24 25 27 28 29 36 | ovolval5lem2 | ⊢ ( ( 𝑤  ∈  ℝ+  ∧  𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) )  →  ∃ 𝑧  ∈  𝑄 𝑧  ≤  ( 𝑦  +𝑒  𝑤 ) ) | 
						
							| 38 | 37 | rexlimdv3a | ⊢ ( 𝑤  ∈  ℝ+  →  ( ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) )  →  ∃ 𝑧  ∈  𝑄 𝑧  ≤  ( 𝑦  +𝑒  𝑤 ) ) ) | 
						
							| 39 | 12 38 | mpan9 | ⊢ ( ( 𝑦  ∈  𝑀  ∧  𝑤  ∈  ℝ+ )  →  ∃ 𝑧  ∈  𝑄 𝑧  ≤  ( 𝑦  +𝑒  𝑤 ) ) | 
						
							| 40 | 39 | 3adant1 | ⊢ ( ( ⊤  ∧  𝑦  ∈  𝑀  ∧  𝑤  ∈  ℝ+ )  →  ∃ 𝑧  ∈  𝑄 𝑧  ≤  ( 𝑦  +𝑒  𝑤 ) ) | 
						
							| 41 | 9 10 40 | infleinf | ⊢ ( ⊤  →  inf ( 𝑄 ,  ℝ* ,   <  )  ≤  inf ( 𝑀 ,  ℝ* ,   <  ) ) | 
						
							| 42 |  | eqeq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) )  ↔  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) | 
						
							| 43 | 42 | anbi2d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  ↔  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 44 | 43 | rexbidv | ⊢ ( 𝑧  =  𝑦  →  ( ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 45 | 44 | cbvrabv | ⊢ { 𝑧  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) }  =  { 𝑦  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) } | 
						
							| 46 |  | simpr | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 ) )  →  𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 47 |  | ioossico | ⊢ ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) )  ⊆  ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑛  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) )  ⊆  ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 49 | 26 | adantr | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑛  ∈  ℕ )  →  𝑓 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 51 | 49 50 | fvovco | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑛  ∈  ℕ )  →  ( ( (,)  ∘  𝑓 ) ‘ 𝑛 )  =  ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) (,) ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 52 | 49 50 | fvovco | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑛  ∈  ℕ )  →  ( ( [,)  ∘  𝑓 ) ‘ 𝑛 )  =  ( ( 1st  ‘ ( 𝑓 ‘ 𝑛 ) ) [,) ( 2nd  ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 53 | 48 51 52 | 3sstr4d | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑛  ∈  ℕ )  →  ( ( (,)  ∘  𝑓 ) ‘ 𝑛 )  ⊆  ( ( [,)  ∘  𝑓 ) ‘ 𝑛 ) ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ∀ 𝑛  ∈  ℕ ( ( (,)  ∘  𝑓 ) ‘ 𝑛 )  ⊆  ( ( [,)  ∘  𝑓 ) ‘ 𝑛 ) ) | 
						
							| 55 |  | ss2iun | ⊢ ( ∀ 𝑛  ∈  ℕ ( ( (,)  ∘  𝑓 ) ‘ 𝑛 )  ⊆  ( ( [,)  ∘  𝑓 ) ‘ 𝑛 )  →  ∪  𝑛  ∈  ℕ ( ( (,)  ∘  𝑓 ) ‘ 𝑛 )  ⊆  ∪  𝑛  ∈  ℕ ( ( [,)  ∘  𝑓 ) ‘ 𝑛 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ∪  𝑛  ∈  ℕ ( ( (,)  ∘  𝑓 ) ‘ 𝑛 )  ⊆  ∪  𝑛  ∈  ℕ ( ( [,)  ∘  𝑓 ) ‘ 𝑛 ) ) | 
						
							| 57 |  | ioof | ⊢ (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ | 
						
							| 58 | 57 | a1i | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  (,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ ) | 
						
							| 59 |  | rexpssxrxp | ⊢ ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 60 | 59 | a1i | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 61 | 58 60 26 | fcoss | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ( (,)  ∘  𝑓 ) : ℕ ⟶ 𝒫  ℝ ) | 
						
							| 62 | 61 | ffnd | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ( (,)  ∘  𝑓 )  Fn  ℕ ) | 
						
							| 63 |  | fniunfv | ⊢ ( ( (,)  ∘  𝑓 )  Fn  ℕ  →  ∪  𝑛  ∈  ℕ ( ( (,)  ∘  𝑓 ) ‘ 𝑛 )  =  ∪  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 64 | 62 63 | syl | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ∪  𝑛  ∈  ℕ ( ( (,)  ∘  𝑓 ) ‘ 𝑛 )  =  ∪  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 65 |  | icof | ⊢ [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* | 
						
							| 66 | 65 | a1i | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* ) | 
						
							| 67 | 66 60 26 | fcoss | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ( [,)  ∘  𝑓 ) : ℕ ⟶ 𝒫  ℝ* ) | 
						
							| 68 | 67 | ffnd | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ( [,)  ∘  𝑓 )  Fn  ℕ ) | 
						
							| 69 |  | fniunfv | ⊢ ( ( [,)  ∘  𝑓 )  Fn  ℕ  →  ∪  𝑛  ∈  ℕ ( ( [,)  ∘  𝑓 ) ‘ 𝑛 )  =  ∪  ran  ( [,)  ∘  𝑓 ) ) | 
						
							| 70 | 68 69 | syl | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ∪  𝑛  ∈  ℕ ( ( [,)  ∘  𝑓 ) ‘ 𝑛 )  =  ∪  ran  ( [,)  ∘  𝑓 ) ) | 
						
							| 71 | 56 64 70 | 3sstr3d | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ∪  ran  ( (,)  ∘  𝑓 )  ⊆  ∪  ran  ( [,)  ∘  𝑓 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 ) )  →  ∪  ran  ( (,)  ∘  𝑓 )  ⊆  ∪  ran  ( [,)  ∘  𝑓 ) ) | 
						
							| 73 | 46 72 | sstrd | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 ) )  →  𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 ) ) | 
						
							| 74 |  | simpr | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  →  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) | 
						
							| 75 | 26 | voliooicof | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ( ( vol  ∘  (,) )  ∘  𝑓 )  =  ( ( vol  ∘  [,) )  ∘  𝑓 ) ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) )  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  →  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) )  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) | 
						
							| 78 | 74 77 | eqtrd | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  →  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) | 
						
							| 79 | 73 78 | anim12dan | ⊢ ( ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  ∧  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) )  →  ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) | 
						
							| 80 | 79 | ex | ⊢ ( 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ )  →  ( ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  →  ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 81 | 80 | reximia | ⊢ ( ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  →  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) | 
						
							| 82 | 81 | a1i | ⊢ ( 𝑦  ∈  ℝ*  →  ( ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  →  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 83 | 82 | ss2rabi | ⊢ { 𝑦  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) }  ⊆  { 𝑦  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) } | 
						
							| 84 | 45 83 | eqsstri | ⊢ { 𝑧  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) }  ⊆  { 𝑦  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) } | 
						
							| 85 | 84 2 1 | 3sstr4i | ⊢ 𝑄  ⊆  𝑀 | 
						
							| 86 |  | infxrss | ⊢ ( ( 𝑄  ⊆  𝑀  ∧  𝑀  ⊆  ℝ* )  →  inf ( 𝑀 ,  ℝ* ,   <  )  ≤  inf ( 𝑄 ,  ℝ* ,   <  ) ) | 
						
							| 87 | 85 6 86 | mp2an | ⊢ inf ( 𝑀 ,  ℝ* ,   <  )  ≤  inf ( 𝑄 ,  ℝ* ,   <  ) | 
						
							| 88 | 87 | a1i | ⊢ ( ⊤  →  inf ( 𝑀 ,  ℝ* ,   <  )  ≤  inf ( 𝑄 ,  ℝ* ,   <  ) ) | 
						
							| 89 | 5 8 41 88 | xrletrid | ⊢ ( ⊤  →  inf ( 𝑄 ,  ℝ* ,   <  )  =  inf ( 𝑀 ,  ℝ* ,   <  ) ) | 
						
							| 90 | 89 | mptru | ⊢ inf ( 𝑄 ,  ℝ* ,   <  )  =  inf ( 𝑀 ,  ℝ* ,   <  ) |