Metamath Proof Explorer


Theorem ovnovol

Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovol.a ( 𝜑𝐴𝑉 )
ovnovol.b ( 𝜑𝐵 ⊆ ℝ )
Assertion ovnovol ( 𝜑 → ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵m { 𝐴 } ) ) = ( vol* ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ovnovol.a ( 𝜑𝐴𝑉 )
2 ovnovol.b ( 𝜑𝐵 ⊆ ℝ )
3 eqid { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵m { 𝐴 } ) ⊆ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
4 eqeq1 ( 𝑤 = 𝑧 → ( 𝑤 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ↔ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) )
5 4 anbi2d ( 𝑤 = 𝑧 → ( ( 𝐵 ran ( [,) ∘ 𝑓 ) ∧ 𝑤 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ↔ ( 𝐵 ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) )
6 5 rexbidv ( 𝑤 = 𝑧 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ran ( [,) ∘ 𝑓 ) ∧ 𝑤 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) )
7 6 cbvrabv { 𝑤 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ran ( [,) ∘ 𝑓 ) ∧ 𝑤 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) }
8 1 2 3 7 ovnovollem3 ( 𝜑 → ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵m { 𝐴 } ) ) = ( vol* ‘ 𝐵 ) )