Step |
Hyp |
Ref |
Expression |
1 |
|
ovnovol.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
ovnovol.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
3 |
|
eqid |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
4 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ↔ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑤 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ↔ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑤 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
7 |
6
|
cbvrabv |
⊢ { 𝑤 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑤 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
8 |
1 2 3 7
|
ovnovollem3 |
⊢ ( 𝜑 → ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵 ↑m { 𝐴 } ) ) = ( vol* ‘ 𝐵 ) ) |