| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovnovol.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | ovnovol.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 3 |  | eqid | ⊢ { 𝑧  ∈  ℝ*  ∣  ∃ 𝑖  ∈  ( ( ( ℝ  ×  ℝ )  ↑m  { 𝐴 } )  ↑m  ℕ ) ( ( 𝐵  ↑m  { 𝐴 } )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  { 𝐴 } ( ( [,)  ∘  ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 )  ∧  𝑧  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ∏ 𝑘  ∈  { 𝐴 } ( vol ‘ ( ( [,)  ∘  ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }  =  { 𝑧  ∈  ℝ*  ∣  ∃ 𝑖  ∈  ( ( ( ℝ  ×  ℝ )  ↑m  { 𝐴 } )  ↑m  ℕ ) ( ( 𝐵  ↑m  { 𝐴 } )  ⊆  ∪  𝑗  ∈  ℕ X 𝑘  ∈  { 𝐴 } ( ( [,)  ∘  ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 )  ∧  𝑧  =  ( Σ^ ‘ ( 𝑗  ∈  ℕ  ↦  ∏ 𝑘  ∈  { 𝐴 } ( vol ‘ ( ( [,)  ∘  ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } | 
						
							| 4 |  | eqeq1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) )  ↔  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( 𝑤  =  𝑧  →  ( ( 𝐵  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑤  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) )  ↔  ( 𝐵  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑤  =  𝑧  →  ( ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐵  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑤  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐵  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 7 | 6 | cbvrabv | ⊢ { 𝑤  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐵  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑤  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) }  =  { 𝑧  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐵  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) } | 
						
							| 8 | 1 2 3 7 | ovnovollem3 | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵  ↑m  { 𝐴 } ) )  =  ( vol* ‘ 𝐵 ) ) |