| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonvolmbllem.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | vonvolmbllem.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 3 |  | vonvolmbllem.e | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝒫  ℝ ( vol* ‘ 𝑦 )  =  ( ( vol* ‘ ( 𝑦  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑦  ∖  𝐵 ) ) ) ) | 
						
							| 4 |  | vonvolmbllem.x | ⊢ ( 𝜑  →  𝑋  ⊆  ( ℝ  ↑m  { 𝐴 } ) ) | 
						
							| 5 |  | vonvolmbllem.y | ⊢ 𝑌  =  ∪  𝑓  ∈  𝑋 ran  𝑓 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑓 𝑌 | 
						
							| 7 | 6 1 4 5 | ssmapsn | ⊢ ( 𝜑  →  𝑋  =  ( 𝑌  ↑m  { 𝐴 } ) ) | 
						
							| 8 | 7 | ineq1d | ⊢ ( 𝜑  →  ( 𝑋  ∩  ( 𝐵  ↑m  { 𝐴 } ) )  =  ( ( 𝑌  ↑m  { 𝐴 } )  ∩  ( 𝐵  ↑m  { 𝐴 } ) ) ) | 
						
							| 9 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 11 | 4 | sselda | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  𝑓  ∈  ( ℝ  ↑m  { 𝐴 } ) ) | 
						
							| 12 |  | elmapi | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  { 𝐴 } )  →  𝑓 : { 𝐴 } ⟶ ℝ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  𝑓 : { 𝐴 } ⟶ ℝ ) | 
						
							| 14 | 13 | frnd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  ran  𝑓  ⊆  ℝ ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 16 |  | iunss | ⊢ ( ∪  𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ  ↔  ∀ 𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( 𝜑  →  ∪  𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 18 | 5 17 | eqsstrid | ⊢ ( 𝜑  →  𝑌  ⊆  ℝ ) | 
						
							| 19 | 10 18 | ssexd | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 20 | 10 2 | ssexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 21 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  { 𝐴 }  ∈  V ) | 
						
							| 23 | 19 20 22 | inmap | ⊢ ( 𝜑  →  ( ( 𝑌  ↑m  { 𝐴 } )  ∩  ( 𝐵  ↑m  { 𝐴 } ) )  =  ( ( 𝑌  ∩  𝐵 )  ↑m  { 𝐴 } ) ) | 
						
							| 24 | 8 23 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋  ∩  ( 𝐵  ↑m  { 𝐴 } ) )  =  ( ( 𝑌  ∩  𝐵 )  ↑m  { 𝐴 } ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑋  ∩  ( 𝐵  ↑m  { 𝐴 } ) ) )  =  ( ( voln* ‘ { 𝐴 } ) ‘ ( ( 𝑌  ∩  𝐵 )  ↑m  { 𝐴 } ) ) ) | 
						
							| 26 | 18 | ssinss1d | ⊢ ( 𝜑  →  ( 𝑌  ∩  𝐵 )  ⊆  ℝ ) | 
						
							| 27 | 1 26 | ovnovol | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( ( 𝑌  ∩  𝐵 )  ↑m  { 𝐴 } ) )  =  ( vol* ‘ ( 𝑌  ∩  𝐵 ) ) ) | 
						
							| 28 | 25 27 | eqtrd | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑋  ∩  ( 𝐵  ↑m  { 𝐴 } ) ) )  =  ( vol* ‘ ( 𝑌  ∩  𝐵 ) ) ) | 
						
							| 29 | 7 | difeq1d | ⊢ ( 𝜑  →  ( 𝑋  ∖  ( 𝐵  ↑m  { 𝐴 } ) )  =  ( ( 𝑌  ↑m  { 𝐴 } )  ∖  ( 𝐵  ↑m  { 𝐴 } ) ) ) | 
						
							| 30 | 19 20 1 | difmapsn | ⊢ ( 𝜑  →  ( ( 𝑌  ↑m  { 𝐴 } )  ∖  ( 𝐵  ↑m  { 𝐴 } ) )  =  ( ( 𝑌  ∖  𝐵 )  ↑m  { 𝐴 } ) ) | 
						
							| 31 | 29 30 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋  ∖  ( 𝐵  ↑m  { 𝐴 } ) )  =  ( ( 𝑌  ∖  𝐵 )  ↑m  { 𝐴 } ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑋  ∖  ( 𝐵  ↑m  { 𝐴 } ) ) )  =  ( ( voln* ‘ { 𝐴 } ) ‘ ( ( 𝑌  ∖  𝐵 )  ↑m  { 𝐴 } ) ) ) | 
						
							| 33 | 18 | ssdifssd | ⊢ ( 𝜑  →  ( 𝑌  ∖  𝐵 )  ⊆  ℝ ) | 
						
							| 34 | 1 33 | ovnovol | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( ( 𝑌  ∖  𝐵 )  ↑m  { 𝐴 } ) )  =  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) | 
						
							| 35 | 32 34 | eqtrd | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑋  ∖  ( 𝐵  ↑m  { 𝐴 } ) ) )  =  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) | 
						
							| 36 | 28 35 | oveq12d | ⊢ ( 𝜑  →  ( ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑋  ∩  ( 𝐵  ↑m  { 𝐴 } ) ) )  +𝑒  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑋  ∖  ( 𝐵  ↑m  { 𝐴 } ) ) ) )  =  ( ( vol* ‘ ( 𝑌  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) ) | 
						
							| 37 | 7 | fveq2d | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ 𝑋 )  =  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑌  ↑m  { 𝐴 } ) ) ) | 
						
							| 38 | 1 18 | ovnovol | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑌  ↑m  { 𝐴 } ) )  =  ( vol* ‘ 𝑌 ) ) | 
						
							| 39 | 19 18 | elpwd | ⊢ ( 𝜑  →  𝑌  ∈  𝒫  ℝ ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑦  =  𝑌  →  ( vol* ‘ 𝑦 )  =  ( vol* ‘ 𝑌 ) ) | 
						
							| 41 |  | ineq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ∩  𝐵 )  =  ( 𝑌  ∩  𝐵 ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( 𝑦  =  𝑌  →  ( vol* ‘ ( 𝑦  ∩  𝐵 ) )  =  ( vol* ‘ ( 𝑌  ∩  𝐵 ) ) ) | 
						
							| 43 |  | difeq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ∖  𝐵 )  =  ( 𝑌  ∖  𝐵 ) ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( 𝑦  =  𝑌  →  ( vol* ‘ ( 𝑦  ∖  𝐵 ) )  =  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) | 
						
							| 45 | 42 44 | oveq12d | ⊢ ( 𝑦  =  𝑌  →  ( ( vol* ‘ ( 𝑦  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑦  ∖  𝐵 ) ) )  =  ( ( vol* ‘ ( 𝑌  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) ) | 
						
							| 46 | 40 45 | eqeq12d | ⊢ ( 𝑦  =  𝑌  →  ( ( vol* ‘ 𝑦 )  =  ( ( vol* ‘ ( 𝑦  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑦  ∖  𝐵 ) ) )  ↔  ( vol* ‘ 𝑌 )  =  ( ( vol* ‘ ( 𝑌  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) ) ) | 
						
							| 47 | 46 | rspcva | ⊢ ( ( 𝑌  ∈  𝒫  ℝ  ∧  ∀ 𝑦  ∈  𝒫  ℝ ( vol* ‘ 𝑦 )  =  ( ( vol* ‘ ( 𝑦  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑦  ∖  𝐵 ) ) ) )  →  ( vol* ‘ 𝑌 )  =  ( ( vol* ‘ ( 𝑌  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) ) | 
						
							| 48 | 39 3 47 | syl2anc | ⊢ ( 𝜑  →  ( vol* ‘ 𝑌 )  =  ( ( vol* ‘ ( 𝑌  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) ) | 
						
							| 49 | 37 38 48 | 3eqtrd | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ 𝑋 )  =  ( ( vol* ‘ ( 𝑌  ∩  𝐵 ) )  +𝑒  ( vol* ‘ ( 𝑌  ∖  𝐵 ) ) ) ) | 
						
							| 50 | 36 49 | eqtr4d | ⊢ ( 𝜑  →  ( ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑋  ∩  ( 𝐵  ↑m  { 𝐴 } ) ) )  +𝑒  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝑋  ∖  ( 𝐵  ↑m  { 𝐴 } ) ) ) )  =  ( ( voln* ‘ { 𝐴 } ) ‘ 𝑋 ) ) |