Metamath Proof Explorer


Theorem vonvol2

Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvol2.f
|- F/_ f Y
vonvol2.a
|- ( ph -> A e. V )
vonvol2.x
|- ( ph -> X e. dom ( voln ` { A } ) )
vonvol2.y
|- Y = U_ f e. X ran f
Assertion vonvol2
|- ( ph -> ( ( voln ` { A } ) ` X ) = ( vol ` Y ) )

Proof

Step Hyp Ref Expression
1 vonvol2.f
 |-  F/_ f Y
2 vonvol2.a
 |-  ( ph -> A e. V )
3 vonvol2.x
 |-  ( ph -> X e. dom ( voln ` { A } ) )
4 vonvol2.y
 |-  Y = U_ f e. X ran f
5 snfi
 |-  { A } e. Fin
6 5 a1i
 |-  ( ph -> { A } e. Fin )
7 6 3 vonmblss2
 |-  ( ph -> X C_ ( RR ^m { A } ) )
8 1 2 7 4 ssmapsn
 |-  ( ph -> X = ( Y ^m { A } ) )
9 8 eqcomd
 |-  ( ph -> ( Y ^m { A } ) = X )
10 9 3 eqeltrd
 |-  ( ph -> ( Y ^m { A } ) e. dom ( voln ` { A } ) )
11 7 adantr
 |-  ( ( ph /\ f e. X ) -> X C_ ( RR ^m { A } ) )
12 simpr
 |-  ( ( ph /\ f e. X ) -> f e. X )
13 11 12 sseldd
 |-  ( ( ph /\ f e. X ) -> f e. ( RR ^m { A } ) )
14 elmapi
 |-  ( f e. ( RR ^m { A } ) -> f : { A } --> RR )
15 frn
 |-  ( f : { A } --> RR -> ran f C_ RR )
16 13 14 15 3syl
 |-  ( ( ph /\ f e. X ) -> ran f C_ RR )
17 16 ralrimiva
 |-  ( ph -> A. f e. X ran f C_ RR )
18 iunss
 |-  ( U_ f e. X ran f C_ RR <-> A. f e. X ran f C_ RR )
19 17 18 sylibr
 |-  ( ph -> U_ f e. X ran f C_ RR )
20 4 19 eqsstrid
 |-  ( ph -> Y C_ RR )
21 2 20 vonvolmbl
 |-  ( ph -> ( ( Y ^m { A } ) e. dom ( voln ` { A } ) <-> Y e. dom vol ) )
22 10 21 mpbid
 |-  ( ph -> Y e. dom vol )
23 2 22 vonvol
 |-  ( ph -> ( ( voln ` { A } ) ` ( Y ^m { A } ) ) = ( vol ` Y ) )
24 9 eqcomd
 |-  ( ph -> X = ( Y ^m { A } ) )
25 24 fveq2d
 |-  ( ph -> ( ( voln ` { A } ) ` X ) = ( ( voln ` { A } ) ` ( Y ^m { A } ) ) )
26 eqidd
 |-  ( ph -> ( vol ` Y ) = ( vol ` Y ) )
27 23 25 26 3eqtr4d
 |-  ( ph -> ( ( voln ` { A } ) ` X ) = ( vol ` Y ) )