Step |
Hyp |
Ref |
Expression |
1 |
|
vonvol2.f |
|- F/_ f Y |
2 |
|
vonvol2.a |
|- ( ph -> A e. V ) |
3 |
|
vonvol2.x |
|- ( ph -> X e. dom ( voln ` { A } ) ) |
4 |
|
vonvol2.y |
|- Y = U_ f e. X ran f |
5 |
|
snfi |
|- { A } e. Fin |
6 |
5
|
a1i |
|- ( ph -> { A } e. Fin ) |
7 |
6 3
|
vonmblss2 |
|- ( ph -> X C_ ( RR ^m { A } ) ) |
8 |
1 2 7 4
|
ssmapsn |
|- ( ph -> X = ( Y ^m { A } ) ) |
9 |
8
|
eqcomd |
|- ( ph -> ( Y ^m { A } ) = X ) |
10 |
9 3
|
eqeltrd |
|- ( ph -> ( Y ^m { A } ) e. dom ( voln ` { A } ) ) |
11 |
7
|
adantr |
|- ( ( ph /\ f e. X ) -> X C_ ( RR ^m { A } ) ) |
12 |
|
simpr |
|- ( ( ph /\ f e. X ) -> f e. X ) |
13 |
11 12
|
sseldd |
|- ( ( ph /\ f e. X ) -> f e. ( RR ^m { A } ) ) |
14 |
|
elmapi |
|- ( f e. ( RR ^m { A } ) -> f : { A } --> RR ) |
15 |
|
frn |
|- ( f : { A } --> RR -> ran f C_ RR ) |
16 |
13 14 15
|
3syl |
|- ( ( ph /\ f e. X ) -> ran f C_ RR ) |
17 |
16
|
ralrimiva |
|- ( ph -> A. f e. X ran f C_ RR ) |
18 |
|
iunss |
|- ( U_ f e. X ran f C_ RR <-> A. f e. X ran f C_ RR ) |
19 |
17 18
|
sylibr |
|- ( ph -> U_ f e. X ran f C_ RR ) |
20 |
4 19
|
eqsstrid |
|- ( ph -> Y C_ RR ) |
21 |
2 20
|
vonvolmbl |
|- ( ph -> ( ( Y ^m { A } ) e. dom ( voln ` { A } ) <-> Y e. dom vol ) ) |
22 |
10 21
|
mpbid |
|- ( ph -> Y e. dom vol ) |
23 |
2 22
|
vonvol |
|- ( ph -> ( ( voln ` { A } ) ` ( Y ^m { A } ) ) = ( vol ` Y ) ) |
24 |
9
|
eqcomd |
|- ( ph -> X = ( Y ^m { A } ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( ( voln ` { A } ) ` X ) = ( ( voln ` { A } ) ` ( Y ^m { A } ) ) ) |
26 |
|
eqidd |
|- ( ph -> ( vol ` Y ) = ( vol ` Y ) ) |
27 |
23 25 26
|
3eqtr4d |
|- ( ph -> ( ( voln ` { A } ) ` X ) = ( vol ` Y ) ) |