| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonvol2.f |  |-  F/_ f Y | 
						
							| 2 |  | vonvol2.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | vonvol2.x |  |-  ( ph -> X e. dom ( voln ` { A } ) ) | 
						
							| 4 |  | vonvol2.y |  |-  Y = U_ f e. X ran f | 
						
							| 5 |  | snfi |  |-  { A } e. Fin | 
						
							| 6 | 5 | a1i |  |-  ( ph -> { A } e. Fin ) | 
						
							| 7 | 6 3 | vonmblss2 |  |-  ( ph -> X C_ ( RR ^m { A } ) ) | 
						
							| 8 | 1 2 7 4 | ssmapsn |  |-  ( ph -> X = ( Y ^m { A } ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ph -> ( Y ^m { A } ) = X ) | 
						
							| 10 | 9 3 | eqeltrd |  |-  ( ph -> ( Y ^m { A } ) e. dom ( voln ` { A } ) ) | 
						
							| 11 | 7 | adantr |  |-  ( ( ph /\ f e. X ) -> X C_ ( RR ^m { A } ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ f e. X ) -> f e. X ) | 
						
							| 13 | 11 12 | sseldd |  |-  ( ( ph /\ f e. X ) -> f e. ( RR ^m { A } ) ) | 
						
							| 14 |  | elmapi |  |-  ( f e. ( RR ^m { A } ) -> f : { A } --> RR ) | 
						
							| 15 |  | frn |  |-  ( f : { A } --> RR -> ran f C_ RR ) | 
						
							| 16 | 13 14 15 | 3syl |  |-  ( ( ph /\ f e. X ) -> ran f C_ RR ) | 
						
							| 17 | 16 | ralrimiva |  |-  ( ph -> A. f e. X ran f C_ RR ) | 
						
							| 18 |  | iunss |  |-  ( U_ f e. X ran f C_ RR <-> A. f e. X ran f C_ RR ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( ph -> U_ f e. X ran f C_ RR ) | 
						
							| 20 | 4 19 | eqsstrid |  |-  ( ph -> Y C_ RR ) | 
						
							| 21 | 2 20 | vonvolmbl |  |-  ( ph -> ( ( Y ^m { A } ) e. dom ( voln ` { A } ) <-> Y e. dom vol ) ) | 
						
							| 22 | 10 21 | mpbid |  |-  ( ph -> Y e. dom vol ) | 
						
							| 23 | 2 22 | vonvol |  |-  ( ph -> ( ( voln ` { A } ) ` ( Y ^m { A } ) ) = ( vol ` Y ) ) | 
						
							| 24 | 9 | eqcomd |  |-  ( ph -> X = ( Y ^m { A } ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ph -> ( ( voln ` { A } ) ` X ) = ( ( voln ` { A } ) ` ( Y ^m { A } ) ) ) | 
						
							| 26 |  | eqidd |  |-  ( ph -> ( vol ` Y ) = ( vol ` Y ) ) | 
						
							| 27 | 23 25 26 | 3eqtr4d |  |-  ( ph -> ( ( voln ` { A } ) ` X ) = ( vol ` Y ) ) |