Step |
Hyp |
Ref |
Expression |
1 |
|
ssmapsn.f |
|- F/_ f D |
2 |
|
ssmapsn.a |
|- ( ph -> A e. V ) |
3 |
|
ssmapsn.c |
|- ( ph -> C C_ ( B ^m { A } ) ) |
4 |
|
ssmapsn.d |
|- D = U_ f e. C ran f |
5 |
3
|
sselda |
|- ( ( ph /\ f e. C ) -> f e. ( B ^m { A } ) ) |
6 |
|
elmapi |
|- ( f e. ( B ^m { A } ) -> f : { A } --> B ) |
7 |
5 6
|
syl |
|- ( ( ph /\ f e. C ) -> f : { A } --> B ) |
8 |
7
|
ffnd |
|- ( ( ph /\ f e. C ) -> f Fn { A } ) |
9 |
4
|
a1i |
|- ( ph -> D = U_ f e. C ran f ) |
10 |
|
ovexd |
|- ( ph -> ( B ^m { A } ) e. _V ) |
11 |
10 3
|
ssexd |
|- ( ph -> C e. _V ) |
12 |
|
rnexg |
|- ( f e. C -> ran f e. _V ) |
13 |
12
|
rgen |
|- A. f e. C ran f e. _V |
14 |
|
iunexg |
|- ( ( C e. _V /\ A. f e. C ran f e. _V ) -> U_ f e. C ran f e. _V ) |
15 |
11 13 14
|
sylancl |
|- ( ph -> U_ f e. C ran f e. _V ) |
16 |
9 15
|
eqeltrd |
|- ( ph -> D e. _V ) |
17 |
16
|
adantr |
|- ( ( ph /\ f e. C ) -> D e. _V ) |
18 |
|
ssiun2 |
|- ( f e. C -> ran f C_ U_ f e. C ran f ) |
19 |
18
|
adantl |
|- ( ( ph /\ f e. C ) -> ran f C_ U_ f e. C ran f ) |
20 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
21 |
2 20
|
syl |
|- ( ph -> A e. { A } ) |
22 |
21
|
adantr |
|- ( ( ph /\ f e. C ) -> A e. { A } ) |
23 |
8 22
|
fnfvelrnd |
|- ( ( ph /\ f e. C ) -> ( f ` A ) e. ran f ) |
24 |
19 23
|
sseldd |
|- ( ( ph /\ f e. C ) -> ( f ` A ) e. U_ f e. C ran f ) |
25 |
24 4
|
eleqtrrdi |
|- ( ( ph /\ f e. C ) -> ( f ` A ) e. D ) |
26 |
8 17 25
|
elmapsnd |
|- ( ( ph /\ f e. C ) -> f e. ( D ^m { A } ) ) |
27 |
16
|
adantr |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> D e. _V ) |
28 |
|
snex |
|- { A } e. _V |
29 |
28
|
a1i |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> { A } e. _V ) |
30 |
|
simpr |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> f e. ( D ^m { A } ) ) |
31 |
21
|
adantr |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> A e. { A } ) |
32 |
27 29 30 31
|
fvmap |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> ( f ` A ) e. D ) |
33 |
|
rneq |
|- ( f = g -> ran f = ran g ) |
34 |
33
|
cbviunv |
|- U_ f e. C ran f = U_ g e. C ran g |
35 |
4 34
|
eqtri |
|- D = U_ g e. C ran g |
36 |
32 35
|
eleqtrdi |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> ( f ` A ) e. U_ g e. C ran g ) |
37 |
|
eliun |
|- ( ( f ` A ) e. U_ g e. C ran g <-> E. g e. C ( f ` A ) e. ran g ) |
38 |
36 37
|
sylib |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> E. g e. C ( f ` A ) e. ran g ) |
39 |
|
simp3 |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> ( f ` A ) e. ran g ) |
40 |
|
simp1l |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> ph ) |
41 |
40 2
|
syl |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> A e. V ) |
42 |
|
eqid |
|- { A } = { A } |
43 |
|
simp1r |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> f e. ( D ^m { A } ) ) |
44 |
|
elmapfn |
|- ( f e. ( D ^m { A } ) -> f Fn { A } ) |
45 |
43 44
|
syl |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> f Fn { A } ) |
46 |
3
|
sselda |
|- ( ( ph /\ g e. C ) -> g e. ( B ^m { A } ) ) |
47 |
|
elmapfn |
|- ( g e. ( B ^m { A } ) -> g Fn { A } ) |
48 |
46 47
|
syl |
|- ( ( ph /\ g e. C ) -> g Fn { A } ) |
49 |
48
|
3adant3 |
|- ( ( ph /\ g e. C /\ ( f ` A ) e. ran g ) -> g Fn { A } ) |
50 |
49
|
3adant1r |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> g Fn { A } ) |
51 |
41 42 45 50
|
fsneqrn |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> ( f = g <-> ( f ` A ) e. ran g ) ) |
52 |
39 51
|
mpbird |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> f = g ) |
53 |
|
simp2 |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> g e. C ) |
54 |
52 53
|
eqeltrd |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> f e. C ) |
55 |
54
|
rexlimdv3a |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> ( E. g e. C ( f ` A ) e. ran g -> f e. C ) ) |
56 |
38 55
|
mpd |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> f e. C ) |
57 |
26 56
|
impbida |
|- ( ph -> ( f e. C <-> f e. ( D ^m { A } ) ) ) |
58 |
57
|
alrimiv |
|- ( ph -> A. f ( f e. C <-> f e. ( D ^m { A } ) ) ) |
59 |
|
nfcv |
|- F/_ f C |
60 |
|
nfcv |
|- F/_ f ^m |
61 |
|
nfcv |
|- F/_ f { A } |
62 |
1 60 61
|
nfov |
|- F/_ f ( D ^m { A } ) |
63 |
59 62
|
cleqf |
|- ( C = ( D ^m { A } ) <-> A. f ( f e. C <-> f e. ( D ^m { A } ) ) ) |
64 |
58 63
|
sylibr |
|- ( ph -> C = ( D ^m { A } ) ) |