Step |
Hyp |
Ref |
Expression |
1 |
|
vonvolmbl2.f |
|- F/_ f Y |
2 |
|
vonvolmbl2.a |
|- ( ph -> A e. V ) |
3 |
|
vonvolmbl2.x |
|- ( ph -> X C_ ( RR ^m { A } ) ) |
4 |
|
vonvolmbl2.y |
|- Y = U_ f e. X ran f |
5 |
1 2 3 4
|
ssmapsn |
|- ( ph -> X = ( Y ^m { A } ) ) |
6 |
5
|
eleq1d |
|- ( ph -> ( X e. dom ( voln ` { A } ) <-> ( Y ^m { A } ) e. dom ( voln ` { A } ) ) ) |
7 |
3
|
adantr |
|- ( ( ph /\ f e. X ) -> X C_ ( RR ^m { A } ) ) |
8 |
|
simpr |
|- ( ( ph /\ f e. X ) -> f e. X ) |
9 |
7 8
|
sseldd |
|- ( ( ph /\ f e. X ) -> f e. ( RR ^m { A } ) ) |
10 |
|
elmapi |
|- ( f e. ( RR ^m { A } ) -> f : { A } --> RR ) |
11 |
|
frn |
|- ( f : { A } --> RR -> ran f C_ RR ) |
12 |
9 10 11
|
3syl |
|- ( ( ph /\ f e. X ) -> ran f C_ RR ) |
13 |
12
|
ralrimiva |
|- ( ph -> A. f e. X ran f C_ RR ) |
14 |
|
iunss |
|- ( U_ f e. X ran f C_ RR <-> A. f e. X ran f C_ RR ) |
15 |
13 14
|
sylibr |
|- ( ph -> U_ f e. X ran f C_ RR ) |
16 |
4 15
|
eqsstrid |
|- ( ph -> Y C_ RR ) |
17 |
2 16
|
vonvolmbl |
|- ( ph -> ( ( Y ^m { A } ) e. dom ( voln ` { A } ) <-> Y e. dom vol ) ) |
18 |
6 17
|
bitrd |
|- ( ph -> ( X e. dom ( voln ` { A } ) <-> Y e. dom vol ) ) |