| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonvolmbl2.f |  |-  F/_ f Y | 
						
							| 2 |  | vonvolmbl2.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | vonvolmbl2.x |  |-  ( ph -> X C_ ( RR ^m { A } ) ) | 
						
							| 4 |  | vonvolmbl2.y |  |-  Y = U_ f e. X ran f | 
						
							| 5 | 1 2 3 4 | ssmapsn |  |-  ( ph -> X = ( Y ^m { A } ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( ph -> ( X e. dom ( voln ` { A } ) <-> ( Y ^m { A } ) e. dom ( voln ` { A } ) ) ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ f e. X ) -> X C_ ( RR ^m { A } ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ f e. X ) -> f e. X ) | 
						
							| 9 | 7 8 | sseldd |  |-  ( ( ph /\ f e. X ) -> f e. ( RR ^m { A } ) ) | 
						
							| 10 |  | elmapi |  |-  ( f e. ( RR ^m { A } ) -> f : { A } --> RR ) | 
						
							| 11 |  | frn |  |-  ( f : { A } --> RR -> ran f C_ RR ) | 
						
							| 12 | 9 10 11 | 3syl |  |-  ( ( ph /\ f e. X ) -> ran f C_ RR ) | 
						
							| 13 | 12 | ralrimiva |  |-  ( ph -> A. f e. X ran f C_ RR ) | 
						
							| 14 |  | iunss |  |-  ( U_ f e. X ran f C_ RR <-> A. f e. X ran f C_ RR ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ph -> U_ f e. X ran f C_ RR ) | 
						
							| 16 | 4 15 | eqsstrid |  |-  ( ph -> Y C_ RR ) | 
						
							| 17 | 2 16 | vonvolmbl |  |-  ( ph -> ( ( Y ^m { A } ) e. dom ( voln ` { A } ) <-> Y e. dom vol ) ) | 
						
							| 18 | 6 17 | bitrd |  |-  ( ph -> ( X e. dom ( voln ` { A } ) <-> Y e. dom vol ) ) |