Metamath Proof Explorer


Theorem vonvolmbl2

Description: A subset X of the space of 1-dimensional Real numbers is Lebesgue measurable if and only if its projection Y on the Real numbers is Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvolmbl2.f
|- F/_ f Y
vonvolmbl2.a
|- ( ph -> A e. V )
vonvolmbl2.x
|- ( ph -> X C_ ( RR ^m { A } ) )
vonvolmbl2.y
|- Y = U_ f e. X ran f
Assertion vonvolmbl2
|- ( ph -> ( X e. dom ( voln ` { A } ) <-> Y e. dom vol ) )

Proof

Step Hyp Ref Expression
1 vonvolmbl2.f
 |-  F/_ f Y
2 vonvolmbl2.a
 |-  ( ph -> A e. V )
3 vonvolmbl2.x
 |-  ( ph -> X C_ ( RR ^m { A } ) )
4 vonvolmbl2.y
 |-  Y = U_ f e. X ran f
5 1 2 3 4 ssmapsn
 |-  ( ph -> X = ( Y ^m { A } ) )
6 5 eleq1d
 |-  ( ph -> ( X e. dom ( voln ` { A } ) <-> ( Y ^m { A } ) e. dom ( voln ` { A } ) ) )
7 3 adantr
 |-  ( ( ph /\ f e. X ) -> X C_ ( RR ^m { A } ) )
8 simpr
 |-  ( ( ph /\ f e. X ) -> f e. X )
9 7 8 sseldd
 |-  ( ( ph /\ f e. X ) -> f e. ( RR ^m { A } ) )
10 elmapi
 |-  ( f e. ( RR ^m { A } ) -> f : { A } --> RR )
11 frn
 |-  ( f : { A } --> RR -> ran f C_ RR )
12 9 10 11 3syl
 |-  ( ( ph /\ f e. X ) -> ran f C_ RR )
13 12 ralrimiva
 |-  ( ph -> A. f e. X ran f C_ RR )
14 iunss
 |-  ( U_ f e. X ran f C_ RR <-> A. f e. X ran f C_ RR )
15 13 14 sylibr
 |-  ( ph -> U_ f e. X ran f C_ RR )
16 4 15 eqsstrid
 |-  ( ph -> Y C_ RR )
17 2 16 vonvolmbl
 |-  ( ph -> ( ( Y ^m { A } ) e. dom ( voln ` { A } ) <-> Y e. dom vol ) )
18 6 17 bitrd
 |-  ( ph -> ( X e. dom ( voln ` { A } ) <-> Y e. dom vol ) )