| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxduhgr0e.v |
|- V = ( Vtx ` G ) |
| 2 |
|
vtxduhgr0e.e |
|- E = ( Edg ` G ) |
| 3 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 4 |
3
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 5 |
3 2
|
edg0iedg0 |
|- ( Fun ( iEdg ` G ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 6 |
4 5
|
syl |
|- ( G e. UHGraph -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 7 |
6
|
adantr |
|- ( ( G e. UHGraph /\ U e. V ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 8 |
1 3
|
vtxdg0e |
|- ( ( U e. V /\ ( iEdg ` G ) = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| 9 |
8
|
ex |
|- ( U e. V -> ( ( iEdg ` G ) = (/) -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |
| 10 |
9
|
adantl |
|- ( ( G e. UHGraph /\ U e. V ) -> ( ( iEdg ` G ) = (/) -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |
| 11 |
7 10
|
sylbid |
|- ( ( G e. UHGraph /\ U e. V ) -> ( E = (/) -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |
| 12 |
11
|
3impia |
|- ( ( G e. UHGraph /\ U e. V /\ E = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |