| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdlfuhgr1v.v |
|- V = ( Vtx ` G ) |
| 2 |
|
vtxdlfuhgr1v.i |
|- I = ( iEdg ` G ) |
| 3 |
|
vtxdlfuhgr1v.e |
|- E = { x e. ~P V | 2 <_ ( # ` x ) } |
| 4 |
|
simpl1 |
|- ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> G e. UHGraph ) |
| 5 |
|
simpr |
|- ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> U e. V ) |
| 6 |
1 2 3
|
lfuhgr1v0e |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( Edg ` G ) = (/) ) |
| 7 |
6
|
adantr |
|- ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> ( Edg ` G ) = (/) ) |
| 8 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 9 |
1 8
|
vtxduhgr0e |
|- ( ( G e. UHGraph /\ U e. V /\ ( Edg ` G ) = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| 10 |
4 5 7 9
|
syl3anc |
|- ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| 11 |
10
|
ex |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( U e. V -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |