| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdlfuhgr1v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
vtxdlfuhgr1v.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
vtxdlfuhgr1v.e |
⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
| 4 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) ∧ 𝑈 ∈ 𝑉 ) → 𝐺 ∈ UHGraph ) |
| 5 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) ∧ 𝑈 ∈ 𝑉 ) → 𝑈 ∈ 𝑉 ) |
| 6 |
1 2 3
|
lfuhgr1v0e |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) ∧ 𝑈 ∈ 𝑉 ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| 8 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 9 |
1 8
|
vtxduhgr0e |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ ( Edg ‘ 𝐺 ) = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
| 10 |
4 5 7 9
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
| 11 |
10
|
ex |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |