Metamath Proof Explorer


Theorem wdomnumr

Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion wdomnumr
|- ( B e. dom card -> ( A ~<_* B <-> A ~<_ B ) )

Proof

Step Hyp Ref Expression
1 brwdom
 |-  ( B e. dom card -> ( A ~<_* B <-> ( A = (/) \/ E. x x : B -onto-> A ) ) )
2 0domg
 |-  ( B e. dom card -> (/) ~<_ B )
3 breq1
 |-  ( A = (/) -> ( A ~<_ B <-> (/) ~<_ B ) )
4 2 3 syl5ibrcom
 |-  ( B e. dom card -> ( A = (/) -> A ~<_ B ) )
5 fodomnum
 |-  ( B e. dom card -> ( x : B -onto-> A -> A ~<_ B ) )
6 5 exlimdv
 |-  ( B e. dom card -> ( E. x x : B -onto-> A -> A ~<_ B ) )
7 4 6 jaod
 |-  ( B e. dom card -> ( ( A = (/) \/ E. x x : B -onto-> A ) -> A ~<_ B ) )
8 1 7 sylbid
 |-  ( B e. dom card -> ( A ~<_* B -> A ~<_ B ) )
9 domwdom
 |-  ( A ~<_ B -> A ~<_* B )
10 8 9 impbid1
 |-  ( B e. dom card -> ( A ~<_* B <-> A ~<_ B ) )