Step |
Hyp |
Ref |
Expression |
1 |
|
brwdom |
|- ( B e. dom card -> ( A ~<_* B <-> ( A = (/) \/ E. x x : B -onto-> A ) ) ) |
2 |
|
0domg |
|- ( B e. dom card -> (/) ~<_ B ) |
3 |
|
breq1 |
|- ( A = (/) -> ( A ~<_ B <-> (/) ~<_ B ) ) |
4 |
2 3
|
syl5ibrcom |
|- ( B e. dom card -> ( A = (/) -> A ~<_ B ) ) |
5 |
|
fodomnum |
|- ( B e. dom card -> ( x : B -onto-> A -> A ~<_ B ) ) |
6 |
5
|
exlimdv |
|- ( B e. dom card -> ( E. x x : B -onto-> A -> A ~<_ B ) ) |
7 |
4 6
|
jaod |
|- ( B e. dom card -> ( ( A = (/) \/ E. x x : B -onto-> A ) -> A ~<_ B ) ) |
8 |
1 7
|
sylbid |
|- ( B e. dom card -> ( A ~<_* B -> A ~<_ B ) ) |
9 |
|
domwdom |
|- ( A ~<_ B -> A ~<_* B ) |
10 |
8 9
|
impbid1 |
|- ( B e. dom card -> ( A ~<_* B <-> A ~<_ B ) ) |