| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wefr |
|- ( R We A -> R Fr A ) |
| 2 |
1
|
adantr |
|- ( ( R We A /\ R Se A ) -> R Fr A ) |
| 3 |
|
weso |
|- ( R We A -> R Or A ) |
| 4 |
|
sopo |
|- ( R Or A -> R Po A ) |
| 5 |
3 4
|
syl |
|- ( R We A -> R Po A ) |
| 6 |
5
|
adantr |
|- ( ( R We A /\ R Se A ) -> R Po A ) |
| 7 |
|
simpr |
|- ( ( R We A /\ R Se A ) -> R Se A ) |
| 8 |
2 6 7
|
3jca |
|- ( ( R We A /\ R Se A ) -> ( R Fr A /\ R Po A /\ R Se A ) ) |
| 9 |
|
frpoind |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B ) |
| 10 |
8 9
|
sylan |
|- ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B ) |