Metamath Proof Explorer


Theorem wfi

Description: The Principle of Well-Ordered Induction. Theorem 6.27 of TakeutiZaring p. 32. This principle states that if B is a subclass of a well-ordered class A with the property that every element of B whose inital segment is included in A is itself equal to A . (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Assertion wfi
|- ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B )

Proof

Step Hyp Ref Expression
1 wefr
 |-  ( R We A -> R Fr A )
2 1 adantr
 |-  ( ( R We A /\ R Se A ) -> R Fr A )
3 weso
 |-  ( R We A -> R Or A )
4 sopo
 |-  ( R Or A -> R Po A )
5 3 4 syl
 |-  ( R We A -> R Po A )
6 5 adantr
 |-  ( ( R We A /\ R Se A ) -> R Po A )
7 simpr
 |-  ( ( R We A /\ R Se A ) -> R Se A )
8 2 6 7 3jca
 |-  ( ( R We A /\ R Se A ) -> ( R Fr A /\ R Po A /\ R Se A ) )
9 frpoind
 |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B )
10 8 9 sylan
 |-  ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B )