Metamath Proof Explorer


Theorem wfi

Description: The Principle of Well-Ordered Induction. Theorem 6.27 of TakeutiZaring p. 32. This principle states that if B is a subclass of a well-ordered class A with the property that every element of B whose inital segment is included in A is itself equal to A . (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Assertion wfi R We A R Se A B A y A Pred R A y B y B A = B

Proof

Step Hyp Ref Expression
1 wefr R We A R Fr A
2 1 adantr R We A R Se A R Fr A
3 weso R We A R Or A
4 sopo R Or A R Po A
5 3 4 syl R We A R Po A
6 5 adantr R We A R Se A R Po A
7 simpr R We A R Se A R Se A
8 2 6 7 3jca R We A R Se A R Fr A R Po A R Se A
9 frpoind R Fr A R Po A R Se A B A y A Pred R A y B y B A = B
10 8 9 sylan R We A R Se A B A y A Pred R A y B y B A = B