Description: The Principle of Well-Ordered Induction. Theorem 6.27 of TakeutiZaring p. 32. This principle states that if B is a subclass of a well-ordered class A with the property that every element of B whose inital segment is included in A is itself equal to A . (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)