Metamath Proof Explorer


Theorem wfiOLD

Description: Obsolete proof of wfi as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion wfiOLD RWeARSeABAyAPredRAyByBA=B

Proof

Step Hyp Ref Expression
1 ssdif0 ABAB=
2 1 necon3bbii ¬ABAB
3 difss ABA
4 tz6.26 RWeARSeAABAAByABPredRABy=
5 eldif yAByA¬yB
6 5 anbi1i yABPredRABy=yA¬yBPredRABy=
7 anass yA¬yBPredRABy=yA¬yBPredRABy=
8 indif2 R-1yAB=R-1yAB
9 df-pred PredRABy=ABR-1y
10 incom ABR-1y=R-1yAB
11 9 10 eqtri PredRABy=R-1yAB
12 df-pred PredRAy=AR-1y
13 incom AR-1y=R-1yA
14 12 13 eqtri PredRAy=R-1yA
15 14 difeq1i PredRAyB=R-1yAB
16 8 11 15 3eqtr4i PredRABy=PredRAyB
17 16 eqeq1i PredRABy=PredRAyB=
18 ssdif0 PredRAyBPredRAyB=
19 17 18 bitr4i PredRABy=PredRAyB
20 19 anbi1ci ¬yBPredRABy=PredRAyB¬yB
21 20 anbi2i yA¬yBPredRABy=yAPredRAyB¬yB
22 6 7 21 3bitri yABPredRABy=yAPredRAyB¬yB
23 22 rexbii2 yABPredRABy=yAPredRAyB¬yB
24 rexanali yAPredRAyB¬yB¬yAPredRAyByB
25 23 24 bitri yABPredRABy=¬yAPredRAyByB
26 4 25 sylib RWeARSeAABAAB¬yAPredRAyByB
27 26 ex RWeARSeAABAAB¬yAPredRAyByB
28 3 27 mpani RWeARSeAAB¬yAPredRAyByB
29 2 28 biimtrid RWeARSeA¬AB¬yAPredRAyByB
30 29 con4d RWeARSeAyAPredRAyByBAB
31 30 imp RWeARSeAyAPredRAyByBAB
32 31 adantrl RWeARSeABAyAPredRAyByBAB
33 simprl RWeARSeABAyAPredRAyByBBA
34 32 33 eqssd RWeARSeABAyAPredRAyByBA=B