Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem1OLD.1 |
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } |
2 |
|
wfrlem3OLDa.2 |
|- G e. _V |
3 |
|
fneq1 |
|- ( g = G -> ( g Fn z <-> G Fn z ) ) |
4 |
|
fveq1 |
|- ( g = G -> ( g ` w ) = ( G ` w ) ) |
5 |
|
reseq1 |
|- ( g = G -> ( g |` Pred ( R , A , w ) ) = ( G |` Pred ( R , A , w ) ) ) |
6 |
5
|
fveq2d |
|- ( g = G -> ( F ` ( g |` Pred ( R , A , w ) ) ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) |
7 |
4 6
|
eqeq12d |
|- ( g = G -> ( ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) <-> ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) |
8 |
7
|
ralbidv |
|- ( g = G -> ( A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) <-> A. w e. z ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) |
9 |
3 8
|
3anbi13d |
|- ( g = G -> ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) <-> ( G Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) ) |
10 |
9
|
exbidv |
|- ( g = G -> ( E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) <-> E. z ( G Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) ) |
11 |
1
|
wfrlem1OLD |
|- B = { g | E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) } |
12 |
2 10 11
|
elab2 |
|- ( G e. B <-> E. z ( G Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) |