Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem1OLD.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
2 |
|
wfrlem3OLDa.2 |
⊢ 𝐺 ∈ V |
3 |
|
fneq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 Fn 𝑧 ↔ 𝐺 Fn 𝑧 ) ) |
4 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) |
5 |
|
reseq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
7 |
4 6
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ 𝑧 ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
9 |
3 8
|
3anbi13d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ( 𝐺 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
10 |
9
|
exbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ∃ 𝑧 ( 𝐺 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
11 |
1
|
wfrlem1OLD |
⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
12 |
2 10 11
|
elab2 |
⊢ ( 𝐺 ∈ 𝐵 ↔ ∃ 𝑧 ( 𝐺 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |