Metamath Proof Explorer


Theorem wfrlem3OLDa

Description: Lemma for well-ordered recursion. Show membership in the class of acceptable functions. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020)

Ref Expression
Hypotheses wfrlem1OLD.1 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
wfrlem3OLDa.2 GV
Assertion wfrlem3OLDa GBzGFnzzAwzPredRAwzwzGw=FGPredRAw

Proof

Step Hyp Ref Expression
1 wfrlem1OLD.1 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
2 wfrlem3OLDa.2 GV
3 fneq1 g=GgFnzGFnz
4 fveq1 g=Ggw=Gw
5 reseq1 g=GgPredRAw=GPredRAw
6 5 fveq2d g=GFgPredRAw=FGPredRAw
7 4 6 eqeq12d g=Ggw=FgPredRAwGw=FGPredRAw
8 7 ralbidv g=Gwzgw=FgPredRAwwzGw=FGPredRAw
9 3 8 3anbi13d g=GgFnzzAwzPredRAwzwzgw=FgPredRAwGFnzzAwzPredRAwzwzGw=FGPredRAw
10 9 exbidv g=GzgFnzzAwzPredRAwzwzgw=FgPredRAwzGFnzzAwzPredRAwzwzGw=FGPredRAw
11 1 wfrlem1OLD B=g|zgFnzzAwzPredRAwzwzgw=FgPredRAw
12 2 10 11 elab2 GBzGFnzzAwzPredRAwzwzGw=FGPredRAw