Metamath Proof Explorer


Theorem wfrlem1OLD

Description: Lemma for well-ordered recursion. The final item we are interested in is the union of acceptable functions B . This lemma just changes bound variables for later use. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem1OLD.1 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
Assertion wfrlem1OLD 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) }

Proof

Step Hyp Ref Expression
1 wfrlem1OLD.1 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
2 fneq1 ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝑥𝑔 Fn 𝑥 ) )
3 fveq1 ( 𝑓 = 𝑔 → ( 𝑓𝑦 ) = ( 𝑔𝑦 ) )
4 reseq1 ( 𝑓 = 𝑔 → ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) )
5 4 fveq2d ( 𝑓 = 𝑔 → ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) )
6 3 5 eqeq12d ( 𝑓 = 𝑔 → ( ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
7 6 ralbidv ( 𝑓 = 𝑔 → ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦𝑥 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
8 2 7 3anbi13d ( 𝑓 = 𝑔 → ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝑔 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) )
9 8 exbidv ( 𝑓 = 𝑔 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑥 ( 𝑔 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) )
10 fneq2 ( 𝑥 = 𝑧 → ( 𝑔 Fn 𝑥𝑔 Fn 𝑧 ) )
11 sseq1 ( 𝑥 = 𝑧 → ( 𝑥𝐴𝑧𝐴 ) )
12 sseq2 ( 𝑥 = 𝑧 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ) )
13 12 raleqbi1dv ( 𝑥 = 𝑧 → ( ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ) )
14 predeq3 ( 𝑦 = 𝑤 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑤 ) )
15 14 sseq1d ( 𝑦 = 𝑤 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ↔ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) )
16 15 cbvralvw ( ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 )
17 13 16 bitrdi ( 𝑥 = 𝑧 → ( ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) )
18 11 17 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ↔ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) )
19 raleq ( 𝑥 = 𝑧 → ( ∀ 𝑦𝑥 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦𝑧 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
20 fveq2 ( 𝑦 = 𝑤 → ( 𝑔𝑦 ) = ( 𝑔𝑤 ) )
21 14 reseq2d ( 𝑦 = 𝑤 → ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) )
22 21 fveq2d ( 𝑦 = 𝑤 → ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) )
23 20 22 eqeq12d ( 𝑦 = 𝑤 → ( ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) )
24 23 cbvralvw ( ∀ 𝑦𝑧 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) )
25 19 24 bitrdi ( 𝑥 = 𝑧 → ( ∀ 𝑦𝑥 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) )
26 10 18 25 3anbi123d ( 𝑥 = 𝑧 → ( ( 𝑔 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) )
27 26 cbvexvw ( ∃ 𝑥 ( 𝑔 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑔𝑦 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) )
28 9 27 bitrdi ( 𝑓 = 𝑔 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) )
29 28 cbvabv { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) }
30 1 29 eqtri 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) }