Metamath Proof Explorer


Theorem wl-3xorcomb

Description: Commutative law for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024)

Ref Expression
Assertion wl-3xorcomb
|- ( hadd ( ph , ps , ch ) <-> hadd ( ph , ch , ps ) )

Proof

Step Hyp Ref Expression
1 wl-3xorcoma
 |-  ( hadd ( ph , ps , ch ) <-> hadd ( ps , ph , ch ) )
2 wl-3xorrot
 |-  ( hadd ( ps , ph , ch ) <-> hadd ( ph , ch , ps ) )
3 1 2 bitri
 |-  ( hadd ( ph , ps , ch ) <-> hadd ( ph , ch , ps ) )