Metamath Proof Explorer


Theorem wl-3xorcomb

Description: Commutative law for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024)

Ref Expression
Assertion wl-3xorcomb ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜑 , 𝜒 , 𝜓 ) )

Proof

Step Hyp Ref Expression
1 wl-3xorcoma ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜓 , 𝜑 , 𝜒 ) )
2 wl-3xorrot ( hadd ( 𝜓 , 𝜑 , 𝜒 ) ↔ hadd ( 𝜑 , 𝜒 , 𝜓 ) )
3 1 2 bitri ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( 𝜑 , 𝜒 , 𝜓 ) )