Metamath Proof Explorer


Theorem wl-3xornot1

Description: Flipping the first input flips the triple xor. wl-3xorrot can rotate any input to the front, so flipping any one of them does the same. (Contributed by Wolf Lammen, 1-May-2024)

Ref Expression
Assertion wl-3xornot1 ( ¬ hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( ¬ 𝜑 , 𝜓 , 𝜒 ) )

Proof

Step Hyp Ref Expression
1 wl-3xorbi ( hadd ( ¬ 𝜑 , 𝜓 , 𝜒 ) ↔ ( ¬ 𝜑 ↔ ( 𝜓𝜒 ) ) )
2 nbbn ( ( ¬ 𝜑 ↔ ( 𝜓𝜒 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓𝜒 ) ) )
3 wl-3xorbi ( hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓𝜒 ) ) )
4 2 3 xchbinxr ( ( ¬ 𝜑 ↔ ( 𝜓𝜒 ) ) ↔ ¬ hadd ( 𝜑 , 𝜓 , 𝜒 ) )
5 1 4 bitr2i ( ¬ hadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ hadd ( ¬ 𝜑 , 𝜓 , 𝜒 ) )