Metamath Proof Explorer


Theorem wl-3xornot

Description: Triple xor distributes over negation. Copy of hadnot . (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 11-Jul-2020)

Ref Expression
Assertion wl-3xornot
|- ( -. hadd ( ph , ps , ch ) <-> hadd ( -. ph , -. ps , -. ch ) )

Proof

Step Hyp Ref Expression
1 notbi
 |-  ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) )
2 1 bibi1i
 |-  ( ( ( ph <-> ps ) <-> -. ch ) <-> ( ( -. ph <-> -. ps ) <-> -. ch ) )
3 xor3
 |-  ( -. ( ( ph <-> ps ) <-> ch ) <-> ( ( ph <-> ps ) <-> -. ch ) )
4 wl-3xorbi2
 |-  ( hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> ch ) )
5 3 4 xchnxbir
 |-  ( -. hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> -. ch ) )
6 wl-3xorbi2
 |-  ( hadd ( -. ph , -. ps , -. ch ) <-> ( ( -. ph <-> -. ps ) <-> -. ch ) )
7 2 5 6 3bitr4i
 |-  ( -. hadd ( ph , ps , ch ) <-> hadd ( -. ph , -. ps , -. ch ) )