Metamath Proof Explorer


Theorem wl-luk-ax2

Description: ax-2 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion wl-luk-ax2
|- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 wl-luk-pm2.21
 |-  ( -. ph -> ( ph -> ch ) )
2 1 wl-luk-a1d
 |-  ( -. ph -> ( ( ph -> ps ) -> ( ph -> ch ) ) )
3 wl-luk-imim2
 |-  ( ( ps -> ch ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )
4 2 3 wl-luk-ja
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )