Metamath Proof Explorer


Theorem wl-luk-ax2

Description: ax-2 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion wl-luk-ax2 φ ψ χ φ ψ φ χ

Proof

Step Hyp Ref Expression
1 wl-luk-pm2.21 ¬ φ φ χ
2 1 wl-luk-a1d ¬ φ φ ψ φ χ
3 wl-luk-imim2 ψ χ φ ψ φ χ
4 2 3 wl-luk-ja φ ψ χ φ ψ φ χ