Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
1. Bootstrapping
wl-luk-ax2
Metamath Proof Explorer
Description: ax-2 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen , 17-Dec-2018) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Assertion
wl-luk-ax2
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) )
Proof
Step
Hyp
Ref
Expression
1
wl-luk-pm2.21
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜒 ) )
2
1
wl-luk-a1d
⊢ ( ¬ 𝜑 → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) )
3
wl-luk-imim2
⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) )
4
2 3
wl-luk-ja
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) )