Metamath Proof Explorer


Theorem wl-luk-ax2

Description: ax-2 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion wl-luk-ax2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 wl-luk-pm2.21 ( ¬ 𝜑 → ( 𝜑𝜒 ) )
2 1 wl-luk-a1d ( ¬ 𝜑 → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
3 wl-luk-imim2 ( ( 𝜓𝜒 ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
4 2 3 wl-luk-ja ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )