Metamath Proof Explorer


Theorem wl-orel12

Description: In a conjunctive normal form a pair of nodes like ( ph \/ ps ) /\ ( -. ph \/ ch ) eliminates the need of a node ( ps \/ ch ) . This theorem allows simplifications in that respect. (Contributed by Wolf Lammen, 20-Jun-2020)

Ref Expression
Assertion wl-orel12
|- ( ( ( ph \/ ps ) /\ ( -. ph \/ ch ) ) -> ( ps \/ ch ) )

Proof

Step Hyp Ref Expression
1 pm2.1
 |-  ( -. ph \/ ph )
2 orel1
 |-  ( -. ph -> ( ( ph \/ ps ) -> ps ) )
3 orc
 |-  ( ps -> ( ps \/ ch ) )
4 2 3 syl6com
 |-  ( ( ph \/ ps ) -> ( -. ph -> ( ps \/ ch ) ) )
5 notnot
 |-  ( ph -> -. -. ph )
6 orel1
 |-  ( -. -. ph -> ( ( -. ph \/ ch ) -> ch ) )
7 5 6 syl
 |-  ( ph -> ( ( -. ph \/ ch ) -> ch ) )
8 olc
 |-  ( ch -> ( ps \/ ch ) )
9 7 8 syl6com
 |-  ( ( -. ph \/ ch ) -> ( ph -> ( ps \/ ch ) ) )
10 4 9 jaao
 |-  ( ( ( ph \/ ps ) /\ ( -. ph \/ ch ) ) -> ( ( -. ph \/ ph ) -> ( ps \/ ch ) ) )
11 1 10 mpi
 |-  ( ( ( ph \/ ps ) /\ ( -. ph \/ ch ) ) -> ( ps \/ ch ) )