Metamath Proof Explorer


Theorem wl-orel12

Description: In a conjunctive normal form a pair of nodes like ( ph \/ ps ) /\ ( -. ph \/ ch ) eliminates the need of a node ( ps \/ ch ) . This theorem allows simplifications in that respect. (Contributed by Wolf Lammen, 20-Jun-2020)

Ref Expression
Assertion wl-orel12 ( ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 pm2.1 ( ¬ 𝜑𝜑 )
2 orel1 ( ¬ 𝜑 → ( ( 𝜑𝜓 ) → 𝜓 ) )
3 orc ( 𝜓 → ( 𝜓𝜒 ) )
4 2 3 syl6com ( ( 𝜑𝜓 ) → ( ¬ 𝜑 → ( 𝜓𝜒 ) ) )
5 notnot ( 𝜑 → ¬ ¬ 𝜑 )
6 orel1 ( ¬ ¬ 𝜑 → ( ( ¬ 𝜑𝜒 ) → 𝜒 ) )
7 5 6 syl ( 𝜑 → ( ( ¬ 𝜑𝜒 ) → 𝜒 ) )
8 olc ( 𝜒 → ( 𝜓𝜒 ) )
9 7 8 syl6com ( ( ¬ 𝜑𝜒 ) → ( 𝜑 → ( 𝜓𝜒 ) ) )
10 4 9 jaao ( ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) → ( ( ¬ 𝜑𝜑 ) → ( 𝜓𝜒 ) ) )
11 1 10 mpi ( ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜒 ) ) → ( 𝜓𝜒 ) )