Metamath Proof Explorer


Theorem wl-cases2-dnf

Description: A particular instance of orddi and anddi converting between disjunctive and conjunctive normal forms, when both ph and -. ph appear. This theorem in fact rephrases cases2 , and is related to consensus . I restate it here in DNF and CNF. The proof deliberately does not use df-ifp and dfifp4 , by which it can be shortened. (Contributed by Wolf Lammen, 21-Jun-2020) (Proof modification is discouraged.)

Ref Expression
Assertion wl-cases2-dnf ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) ↔ ( ( ¬ 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 exmid ( 𝜑 ∨ ¬ 𝜑 )
2 1 biantrur ( ( 𝜑𝜒 ) ↔ ( ( 𝜑 ∨ ¬ 𝜑 ) ∧ ( 𝜑𝜒 ) ) )
3 orcom ( ( ¬ 𝜑𝜓 ) ↔ ( 𝜓 ∨ ¬ 𝜑 ) )
4 orcom ( ( 𝜒𝜓 ) ↔ ( 𝜓𝜒 ) )
5 3 4 anbi12i ( ( ( ¬ 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) ↔ ( ( 𝜓 ∨ ¬ 𝜑 ) ∧ ( 𝜓𝜒 ) ) )
6 2 5 anbi12i ( ( ( 𝜑𝜒 ) ∧ ( ( ¬ 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) ) ↔ ( ( ( 𝜑 ∨ ¬ 𝜑 ) ∧ ( 𝜑𝜒 ) ) ∧ ( ( 𝜓 ∨ ¬ 𝜑 ) ∧ ( 𝜓𝜒 ) ) ) )
7 anass ( ( ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜓 ) ) ∧ ( 𝜒𝜓 ) ) ↔ ( ( 𝜑𝜒 ) ∧ ( ( ¬ 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) ) )
8 orddi ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) ↔ ( ( ( 𝜑 ∨ ¬ 𝜑 ) ∧ ( 𝜑𝜒 ) ) ∧ ( ( 𝜓 ∨ ¬ 𝜑 ) ∧ ( 𝜓𝜒 ) ) ) )
9 6 7 8 3bitr4ri ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) ↔ ( ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜓 ) ) ∧ ( 𝜒𝜓 ) ) )
10 wl-orel12 ( ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜓 ) ) → ( 𝜒𝜓 ) )
11 10 pm4.71i ( ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜓 ) ) ↔ ( ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜓 ) ) ∧ ( 𝜒𝜓 ) ) )
12 ancom ( ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜓 ) ) ↔ ( ( ¬ 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )
13 9 11 12 3bitr2i ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) ↔ ( ( ¬ 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) )